A. | $\frac{\sqrt{5}}{5}$ | B. | $\sqrt{5}$ | C. | $\frac{6\sqrt{5}}{5}$ | D. | 0 |
分析 設(shè)出與直線(xiàn)x+2y-10=0平行的直線(xiàn)方程為直線(xiàn)x+2y+m=0,聯(lián)立直線(xiàn)方程與橢圓方程,由判別式等于0求得m值,再由兩點(diǎn)間的距離公式得答案.
解答 解:設(shè)與直線(xiàn)x+2y-10=0平行的直線(xiàn)方程為直線(xiàn)x+2y+m=0,
聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1}\\{x+2y-10=0}\end{array}\right.$,得25x2+18mx+9m2-144=0.
由(18m)2-100(9m2-144)=0,得576m2=14400,
解得m=±5.
當(dāng)m=-5時(shí),直線(xiàn)方程為x+2y-5=0,
此時(shí)兩直線(xiàn)x+2y-10=0與直線(xiàn)x+2y-5=0的距離d=$\frac{|-10+5|}{\sqrt{5}}$=$\sqrt{5}$.
橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上點(diǎn)到直線(xiàn)x+2y-10=0的距離最小值為$\sqrt{5}$.
故選:B.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查直線(xiàn)與橢圓位置關(guān)系的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x+2y-3=0 | B. | x-y-3=0 | C. | x+2y+3=0 | D. | x-y+3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
日 期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/°C | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{5}{16}$ | C. | $\frac{4}{15}$ | D. | $\frac{3}{14}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個(gè)單位 | B. | 向右平移$\frac{π}{6}$個(gè)單位 | ||
C. | 向左平移$\frac{5π}{12}$個(gè)單位 | D. | 向右平移$\frac{5π}{12}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | $2\sqrt{2}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com