分析 (1)求出p即可求解拋物線方程.
(2)設AB方程為y=kx+t(k顯然存在),由$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}=4y}\end{array}\right.$⇒x2-4kx-4=0,(△>0恒成立),設A(x1,y1),B(x2,y2),利用韋達定理以及判別式通過$\overrightarrow{OA}.\overrightarrow{OB}=-4$,得lAB:y=kx+2,得到直線AB過定點T(0,2).
(3)過A、B的切線方程分別為x1x=2(y1+y)…①,x2x=2(y2+y)…②
由(2)得x1+x2=4k,x1x2=-8…③
由①②③得M(2k,-2),易得Q(2k,2k2+2),可得MQ=$\sqrt{(2{k}^{2}+4)^{2}}≥4$,即可得到所求最小值.
解答 解:(1)∵拋物線x2=2py(p>0)的焦點為F(0,1),∴p=1,
∴拋物線的方程為x2=4y.
(2)∵F(0,1),設AB方程為y=kx+t(k顯然存在),
由$\left\{\begin{array}{l}{y=kx+t}\\{{x}^{2}=4y}\end{array}\right.$⇒x2-4kx-4t=0,(△>0恒成立)
設A(x1,y1),B(x2,y2),則x1+x2=4k,x1x2=-4t
由$\overrightarrow{OA}.\overrightarrow{OB}=-4$得${x}_{1}{x}_{2}+{y}_{1}{y}_{2}={x}_{1}{x}_{2}+\frac{{(x}_{1}{x}_{2})^{2}}{16}=-4$,
即t2-4t+4=0,
∴t=2,∴l(xiāng)AB:y=kx+2,故直線AB過定點T(0,2).
(3)過A、B的切線方程分別為x1x=2(y1+y)…①,x2x=2(y2+y)…②
由(2)得)x1+x2=4k,x1x2=-8…③
由①②③得M(2k,-2),
易得Q(2k,2k2+2),
∴MQ=$\sqrt{(2{k}^{2}+4)^{2}}≥4$,
∴當k=0時,|QM|min=4.
點評 通過直線與圓錐曲線的位置關系處理,考查學生的運算能力.通過向量與幾何問題的綜合,考查學生分析轉化問題的能力,探究研究問題的能力,并體現(xiàn)了合理消元,設而不解的代數(shù)變形的思想.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{6}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{28}$ | B. | $\frac{1}{7}$ | C. | $\frac{15}{56}$ | D. | $\frac{2}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{5}$ | B. | $\sqrt{5}$ | C. | $\frac{6\sqrt{5}}{5}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 相交 | B. | 相離 | C. | 外切 | D. | 內切 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com