6.為了解春季晝夜溫差大小與種子發(fā)芽多少之間的關(guān)系,現(xiàn)從4月的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如表格:
日  期4月1日4月7日4月15日4月21日4月30日
溫差x/°C101113128
發(fā)芽數(shù)y/顆2325302616
(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請(qǐng)根據(jù)這5天中的另三天的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\overrightarrow{a}$
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

分析 (1)用數(shù)組(m,n)表示選出2天的發(fā)芽情況,用列舉法可得m,n的所有取值情況,分析可得m,n均不小于25的情況數(shù)目,由古典概型公式,計(jì)算可得答案;
(2)根據(jù)所給的數(shù)據(jù),先做出x,y的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點(diǎn),根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫(xiě)出線性回歸方程.

解答 解:(1)用數(shù)組(m,n)表示選出2天的發(fā)芽情況,
m,n的所有取值情況有(23,25),(23,30),(23,26),(23,16),(25,30),
(25,26),(25,16),(30,26),(30,16),(30,26),共有10個(gè)
設(shè)“m,n均不小于25”為事件A,
則包含的基本事件有(25,30),(25,26),(30,26),
所以P(A)=$\frac{3}{10}$,即事件A的概率為$\frac{3}{10}$;
(2)由表中數(shù)據(jù)得,$\overline{x}$=$\frac{1}{3}$×(11+13+12)=12,
$\overline{y}$=$\frac{1}{3}$×(25+30+26)=27,
且3$\overline{x}$$\overline{y}$=972,$\sum_{i=1}^{3}$xiyi=977,$\sum_{i=1}^{3}$${{x}_{i}}^{2}$=434,3${\overline{x}}^{2}$=432;
由公式得$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{977-972}{434-432}$=$\frac{5}{2}$,
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$=27-$\frac{5}{2}$×12=-3,
所以y關(guān)于x的線性回歸方程為$\stackrel{∧}{y}$=$\frac{5}{2}$x-3.

點(diǎn)評(píng) 本題考查回歸直線方程的計(jì)算與應(yīng)用問(wèn)題,涉及古典概型的計(jì)算問(wèn)題,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知集合M={x|x2-3x+2=0},N={-2,-1,1,2},則M∩N={1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.袋子中裝有大小相同的八個(gè)小球,其中白球五個(gè),分別編號(hào)1、2、3、4、5;紅球三個(gè),分別編號(hào)1、2、3,現(xiàn)從袋子中任取三個(gè)小球,它們的最大編號(hào)為隨機(jī)變量X,則P(X=3)等于( 。
A.$\frac{5}{28}$B.$\frac{1}{7}$C.$\frac{15}{56}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.省實(shí)驗(yàn)中學(xué)高三共有學(xué)生600人,一次數(shù)學(xué)考試的成績(jī)(試卷滿分150分)服從正態(tài)分布N(100,σ2),統(tǒng)計(jì)結(jié)果顯示學(xué)生考試成績(jī)?cè)?0分到100分之間的人數(shù)約占總?cè)藬?shù)的$\frac{1}{3}$,則此次考試成績(jī)不低于120分的學(xué)生約有100人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={x∈N|0≤x≤4},則下列說(shuō)法正確的是(  )
A.0∉AB.1⊆AC.$\sqrt{2}⊆A$D.3∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.將f(x)=|x-1|寫(xiě)成分段函數(shù)形式為f(x)=$\left\{\begin{array}{l}{x-1,x≥1}\\{1-x,x<1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上點(diǎn)到直線x+2y-10=0的距離最小值為( 。
A.$\frac{\sqrt{5}}{5}$B.$\sqrt{5}$C.$\frac{6\sqrt{5}}{5}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.正方形ABCD,沿對(duì)角線BD折成直二面角A-BD-C,則折后的異面直線AB與CD所成的角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)f(x)=2kx3+4(k-1)x2-3k2-2在區(qū)間(0,2)上是減函數(shù),則k的取值范圍是( 。
A.$k<\frac{2}{5}$B.$k≤\frac{2}{5}$C.$0<k≤\frac{2}{5}$D.$0≤k≤\frac{2}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案