15.已知定義在復(fù)數(shù)集C上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{1+x,x∈R}\\{\frac{1-i}{|i|}x,x∉R}\end{array}\right.$(i是虛數(shù)單位),則f(f(1+i))=(  )
A.-1B.1C.3D.3-i

分析 直接利用分段函數(shù),由里及外逐步求解即可.

解答 解:f(x)=$\left\{\begin{array}{l}{1+x,x∈R}\\{\frac{1-i}{|i|}x,x∉R}\end{array}\right.$(i是虛數(shù)單位),則f(f(1+i))=f($\frac{1-i}{|i|}•(1+i)$)=f(2)=1+2=3.
故選:C.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,復(fù)數(shù)的代數(shù)形式混合運(yùn)算,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知曲線y=$\frac{1}{3}$x3+x.
(1)求曲線在點(diǎn)P(1,$\frac{4}{3}$)處的切線方程;      
(2)求該曲線的切線傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓5x2+9y2=45,橢圓的右焦點(diǎn)為F,
(1)求過(guò)點(diǎn)F且斜率為1的直線l0被橢圓截得的弦AB的長(zhǎng).
(2)求以點(diǎn)M(1,1)為中點(diǎn)的橢圓的弦CD所在的直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)f(x)是定義在(-∞,+∞)上,以2為周期的周期函數(shù),且f(x)為偶函數(shù),在區(qū)間[2,3]上,f(x)=-2(x-3)2+4,則x∈[0,2]時(shí),f(x)=-2(x-1)2+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)U=R,M={x|x≥1},N={x|0≤x<5},則(∁UM)∪(∁UN)={x|x<0或x≥5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)2cosx-2x+π+4=0,y+siny•cosy-1=0,則sin(x-2y)的值為(  )
A.1B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若復(fù)數(shù)z滿足2z+$\overline{z}$=3-2i,其中i為虛數(shù)單位,則z=1-2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)向量$\overrightarrow{a}$=(1,-4),$\overrightarrow$=(-1,x),$\overrightarrow{c}$=($\overrightarrow{a}$+3$\overrightarrow$),若$\overrightarrow{a}$∥$\overrightarrow{c}$,則實(shí)數(shù)x的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.隨機(jī)地向半圓0<y<$\sqrt{2ax-{x^2}}$(a為正常數(shù))內(nèi)擲一點(diǎn),點(diǎn)落在圓內(nèi)任何區(qū)域的概率與區(qū)域的面積成正比,則原點(diǎn)與該點(diǎn)的連線與x軸的夾角小于$\frac{π}{4}$的概率為( 。
A.$\frac{1}{2}+\frac{1}{π}$B.$\frac{1}{2}-\frac{1}{π}$C.$\frac{1}{2}$D.$\frac{1}{π}$

查看答案和解析>>

同步練習(xí)冊(cè)答案