6.等差數(shù)列的前n項(xiàng),前2n項(xiàng),前3n項(xiàng)的和分別為A,B,C,則(  )
A.A+C=2BB.B2=ACC.3(B-A)=CD.A2+B2=A(B+C)

分析 由等差數(shù)列的前n項(xiàng)和公式的性質(zhì)可得:A,B-A,C-B也成等差數(shù)列.即可得出.

解答 解:由等差數(shù)列的前n項(xiàng)和公式的性質(zhì)可得:A,B-A,C-B也成等差數(shù)列.
∴2(B-A)=A+C-B,解得3(B-A)=C.
故選:C.

點(diǎn)評 本題考查了等差數(shù)列的求和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓錐的高PO=4,底面半徑OB=2,E為母線PB的中點(diǎn),C為底面圓周上一點(diǎn),滿足OB⊥OC,F(xiàn)為弧BC上一點(diǎn),且∠BOF=$\frac{π}{3}$.
(1)求證EF∥平面POC;
(2)求三棱錐E-OCF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,O是坐標(biāo)原點(diǎn),M、N是單位圓上的兩點(diǎn),且分別在第一和第三象限,則$|\overrightarrow{OM}+\overrightarrow{ON}|$的范圍為[0.$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3+a9=16,則S11=(  )
A.88B.48C.96D.176

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a為實(shí)數(shù),函數(shù)$f(x)=1-\frac{a}{{{2^x}+1}}$.
(1)若f(-1)=-1,求a的值;
(2)是否存在實(shí)數(shù)a,使得f(x)為奇函數(shù);
(3)若函數(shù)f(x)在其定義域上存在零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|y=log2x,y∈Z},B={1,2,3,4,5,6,7,8,9},則A∩B=( 。
A.{1,2,3,4}B.{2,4,6,8}C.{1,2,4,8}D.{2,4,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.圓x2+y2-2x+4y-3=0上的點(diǎn)到直線x-y+5=0的距離的取值范圍為(2$\sqrt{2}$,6$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,若輸出的x值為31,則a的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知動圓P過點(diǎn)F(1,0)且和直線l:x=-1相切.
(1)求動點(diǎn)P的軌跡E的方程;
(2)已知點(diǎn)M(-1,0),若過點(diǎn)F的直線與軌跡E交于A,B兩點(diǎn),求證:直線MA,MB的斜率之和為定值.

查看答案和解析>>

同步練習(xí)冊答案