設(shè)雙曲線F:
x2
a2
-
y2
b2
=1(a>0,b>0),F1,F2
為雙曲線F的焦點(diǎn).若雙曲線F存在點(diǎn)M,滿足
1
2
|MF1|=|MO|=|MF2|
(O為原點(diǎn)),則雙曲線F的離心率為( 。
A、
3
B、
5
C、
6
D、
5
-1
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由題設(shè)條件結(jié)合雙曲線性質(zhì)推導(dǎo)出|MF1|=4a,|MO|=|MF2|=2a,取OF2的中點(diǎn)N,連結(jié)MN,得到MN⊥F1F2,且ON=
c
2
,F(xiàn)1N=
3
2
c
,把x=
c
2
代入雙曲線F,求出MN=
b
2a
c2-4a2
,由此能求出雙曲線的離心率.
解答: 雙曲線F存在點(diǎn)M,滿足
1
2
|MF1|=|MO|=|MF2|
(O為原點(diǎn)),
∴|MF1|=4a,|MO|=|MF2|=2a,
取OF2的中點(diǎn)N,連結(jié)MN,
則MN⊥F1F2,且ON=
c
2
,F(xiàn)1N=
3
2
c
,
把x=
c
2
代入雙曲線F,
c2
4a2
-
y2
b2
=1
,
解得MN=|y|=
b
2a
c2-4a2

∵|MF1|2=|F1N|2+|MN|2,
∴16a2=
9
4
c2
+
b2
4a2
(c2-4a2)
,
整理,得e4+4e2-60=0,
解得e2=6,或e2=-10(舍),
∴e=
6

故選:C.
點(diǎn)評(píng):本題考查雙曲線的離心率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意數(shù)形結(jié)合思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

y=
1
2x+1
(1<x<3)
的值域?yàn)?div id="t7vj5rh" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長(zhǎng)方體三個(gè)面的面對(duì)角線的長(zhǎng)度分別為3,3,
14
那么它的外接球的表面積為( 。
A、8πB、16π
C、32πD、64π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)五位自然
.
a1a2a3a4a5
,ai∈{0,1,2,3,4,5},i=1,2,3,4,5,當(dāng)且僅當(dāng)a1>a2>a3,a3<a4<a5時(shí)稱為“凹數(shù)”(如32014,53134等),則滿足條件的五位自然數(shù)中“凹數(shù)”的個(gè)數(shù)為( 。
A、110B、137
C、145D、146

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在底面半徑為3,高為4+2
3
的圓柱形有蓋容器內(nèi),放入一個(gè)半徑為3的大球后,再放入與球面、圓柱側(cè)面及上底面均相切的小球,則放入小球的個(gè)數(shù)最多為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|log2(x+1)|,-1<x<0
-x2+4x,x≥0
,且關(guān)于x的方程f(x)-m=0,(m∈R)恰有三個(gè)互不相同的實(shí)數(shù)根x1,x2,x3,則x1x2x3的取值范圍是(  )
A、(-4,0)
B、(-
15
4
,0)
C、[-
15
4
,0)
D、[-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且對(duì)任意x>0,都有f′(x)>
f(x)
x

(Ⅰ)判斷函數(shù)F(x)=
f(x)
x
在(0,+∞)上的單調(diào)性;
(Ⅱ)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)請(qǐng)將(Ⅱ)中的結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)無窮數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn(n∈N*),且點(diǎn)(Sn-1,Sn)(n∈N*,n≥2)在直線(2t+3)x-3ty+3t=0上(t為與n無關(guān)的正實(shí)數(shù)).
(1)求證:數(shù)列{an}(n∈N*)為等比數(shù)列;
(2)記數(shù)列{an}的公比為f(t),數(shù)列{bn}滿足b1=1,bn=f(
1
bn-1
)(n∈N*,n≥2),
設(shè)cn=b2n-1b2n-b2nb2n+1,求數(shù)列{cn}的前n項(xiàng)和Tn
(3)(理)若(1)中無窮等比數(shù)列{an}(n∈N*)的各項(xiàng)和存在,記S(t)=a1+a2+…+an+…,求函數(shù)S(t)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
16
-
y2
9
=1的左焦點(diǎn)F1的直線交在雙曲線一支的弦長(zhǎng)AB為6,另一焦點(diǎn)為F2,求△ABF2的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案