【題目】每年的日是全國愛牙日,為了迎接這一節(jié)日,某地區(qū)衛(wèi)生部門成立了調(diào)查小組,調(diào)查“常吃零食與患齲齒的關(guān)系”,對該地區(qū)小學(xué)六年級名學(xué)生進(jìn)行檢查,按患齲齒的不患齲齒分類,得匯總數(shù)據(jù):不常吃零食且不患齲齒的學(xué)生有名,常吃零食但不患齲齒的學(xué)生有名,不常吃零食但患齲齒的學(xué)生有名.

1)完成答卷中的列聯(lián)表,問:能否在犯錯率不超過的前提下,認(rèn)為該地區(qū)學(xué)生的常吃零食與患齲齒有關(guān)系?

2名區(qū)衛(wèi)生部門的工作人員隨機(jī)分成兩組,每組人,一組負(fù)責(zé)數(shù)據(jù)收集,另一組負(fù)責(zé)數(shù)據(jù)處理,求工作人員甲分到負(fù)責(zé)收集數(shù)據(jù)組,工作人員乙分到負(fù)責(zé)數(shù)據(jù)處理組的概率.

附:

【答案】(1)填表見解析,能在犯錯率不超過0.001的前提下,認(rèn)為該地區(qū)學(xué)生的常吃零食與患齲齒有關(guān)系(2)

【解析】

1)根據(jù)題中信息完善列聯(lián)表,并計算出的觀測值,并將觀測值與進(jìn)行大小比較,可對題中結(jié)論的正誤進(jìn)行判斷;

2)將所有可能分組的情況列舉出來,確定全部的分組數(shù),并確定事件“工作人員甲分到負(fù)責(zé)收集數(shù)據(jù)組,工作人員乙分到負(fù)責(zé)數(shù)據(jù)處理組”所包含的組數(shù),然后利用古典概型的概率公式可計算出所求事件的概率.

1)由題意可得列聯(lián)表:

不常吃零食

常吃零食

總計

不患齲齒

患齲齒

總計

,

故能在犯錯率不超過的前提下,認(rèn)為該地區(qū)學(xué)生的常吃零食與患齲齒有關(guān)系;

2)設(shè)其他工作人員為丙和丁,人分組的所有情況如下表:

小組

收集數(shù)據(jù)

甲乙

甲丙

甲丁

乙丙

乙丁

丙丁

處理數(shù)據(jù)

丙丁

乙丁

乙丙

甲丁

甲丙

甲乙

分組的情況總共有種,

工作人員甲負(fù)責(zé)收集數(shù)據(jù)且工作人員乙負(fù)責(zé)處理數(shù)據(jù)占組,分別是第組和第組.

所以工作人員甲分到負(fù)責(zé)收集數(shù)據(jù)組,工作人員乙分到負(fù)責(zé)數(shù)據(jù)處理組的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中為真命題的是(  )

A.命題“若,則”的否命題

B.命題“若xy,則x|y|”的逆命題

C.命題“若x1,則”的否命題

D.命題“已知,若,則ab”的逆命題、否命題、逆否命題均為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照下列要求,分別求有多少種不同的方法?

15個不同的小球放入3個不同的盒子;

25個不同的小球放入3個不同的盒子,每個盒子至少一個小球;

35個相同的小球放入3個不同的盒子,每個盒子至少一個小球;

45個不同的小球放入3個不同的盒子,恰有1個空盒.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當(dāng)時,證明:

(Ⅲ)求證:對任意正整數(shù),都有 (其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若上單調(diào)遞增,求實數(shù)的取值范圍;

2)設(shè),若,恒有成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知直線與曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的右焦點為,左、右頂點分別為、,上、下頂點分別為、,連結(jié)并延長交橢圓于點,連結(jié),記橢圓的離心率為.

1)若.

①求橢圓的標(biāo)準(zhǔn)方程;

②求的面積之比.

2)若直線和直線的斜率之積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)設(shè),求函數(shù)的單調(diào)增區(qū)間;

2)設(shè),求證:存在唯一的,使得函數(shù)的圖象在點處的切線l與函數(shù)的圖象也相切;

3)求證:對任意給定的正數(shù)a,總存在正數(shù)x,使得不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場灌溉水渠長為1000米,橫截面是等腰梯形,如圖,在等腰梯形中,,,其中渠底寬為1米,渠口寬為3米,渠深.根據(jù)國家對農(nóng)田建設(shè)補(bǔ)貼的政策,該農(nóng)場計劃在原水渠的基礎(chǔ)上分別沿射線方向加寬、方向加深,若擴(kuò)建后的水渠橫截面仍是等腰梯形,且面積是原面積的2.設(shè)擴(kuò)建后渠深為米,若挖掘費(fèi)用為每立方米萬元,水渠的內(nèi)壁(渠底和梯形兩腰,端也要重新鋪設(shè))鋪設(shè)混凝土的費(fèi)用為每平方米萬元.

1)用表示渠底的長度,并求出的取值范圍;

2)問渠深為多少米時,建設(shè)費(fèi)用最低?

查看答案和解析>>

同步練習(xí)冊答案