【題目】甲烷分子由一個(gè)碳原子和四個(gè)氫原子組成,其空間構(gòu)型為一個(gè)各條棱都相等的四面體,四個(gè)氫原子分別位于該四面體的四個(gè)頂點(diǎn)上,碳原子位于該四面體的中心,它與每個(gè)氫原子的距離都是,若將碳原子和氫原子均視為一個(gè)點(diǎn),則任意兩個(gè)氫原子之間的距離為(

A.B.C.D.

【答案】B

【解析】

將此正四面體補(bǔ)成正方體,正方體的對(duì)角線就是正四面體外接球的直徑,由此可得外接球直徑(正方體)的體對(duì)角線,正四面體的棱長(zhǎng)(正方體的面對(duì)角線,正方體的棱之間的關(guān)系.

顯然,四面體的四個(gè)頂點(diǎn)在以中心(碳原子)為球心,中心到各頂點(diǎn)(氫原子)的距離為半徑的球面上,如圖,將此正四面體補(bǔ)成正方體,其中、、也在球面上,設(shè)任意兩個(gè)氫原子之間的距離為,則.

、之間的關(guān)系是,,因此

,即任意兩個(gè)氫原子之間的距離為.

故選:B..

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)令函數(shù),若函數(shù)有且只有一個(gè)零點(diǎn),試判斷與3的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,側(cè)面是菱形,.

(I)證明:;

(II)若,求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 命題“若,則”的否命題是“若,則

B. 命題“,”的否定是“

C. 處有極值”是“”的充要條件

D. 命題“若函數(shù)有零點(diǎn),則“”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中隨機(jī)抽取部分高一學(xué)生調(diào)查其上學(xué)路上所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學(xué)路上所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為,,,,,

(Ⅰ)求直方圖中的值;

(Ⅱ)如果上學(xué)路上所需時(shí)間不少于1小時(shí)的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,若招生1200名,請(qǐng)估計(jì)新生中有多少名學(xué)生可以申請(qǐng)住宿;

(Ⅲ)從學(xué)校的高一學(xué)生中任選4名學(xué)生,這4名學(xué)生中上學(xué)路上所需時(shí)間少于40分鐘的人數(shù)記為,求的分布列和數(shù)學(xué)期望.(以直方圖中頻率作為概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的最大值;

(2)當(dāng)時(shí),函數(shù)有最小值. 的最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是邊長(zhǎng)為的菱形,.

(1)證明:平面;

(2)若,求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)說(shuō)法,其中正確的是(

A.線段在平面內(nèi),則直線不在平面內(nèi);B.三條平行直線共面;

C.兩平面有一個(gè)公共點(diǎn),則一定有無(wú)數(shù)個(gè)公共點(diǎn);D.空間三點(diǎn)確定一個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 離心率等于,、是橢圓上的兩點(diǎn).

(1)求橢圓的方程;

(2)是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).當(dāng)運(yùn)動(dòng)時(shí),滿(mǎn)足,試問(wèn)直線的斜率是否為定值?如果為定值,請(qǐng)求出此定值;如果不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案