精英家教網 > 高中數學 > 題目詳情
9.已知函數f(x)=$\left\{\begin{array}{l}{5(\frac{1}{2})^{2x},-1≤x<1}\\{1+\frac{4}{{x}^{2}},x≥1}\end{array}\right.$設m>n≥-1,且f(m)=f(n),則m•f($\sqrt{2}$m)的最小值為( 。
A.4B.2C.$\sqrt{2}$D.2$\sqrt{2}$

分析 做出f(x)的圖象,根據圖象判斷m的范圍,利用基本不等式得出最小值.

解答 解:做出f(x)的函數圖象如圖所示:

∵f(m)=f(n),m>n≥-1,
∴1≤m<4,
∴mf($\sqrt{2}$m)=m(1+$\frac{2}{{m}^{2}}$)=m+$\frac{2}{m}$≥2$\sqrt{2}$.
當且僅當m=$\sqrt{2}$時取等號.
故選:D.

點評 本題考查了分段函數的圖象,基本不等式的應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

19.如果實數x,y滿足條件$\left\{{\begin{array}{l}{x+2y-4≥0}\\{x-y+2≥0}\\{2x+y-3≤0}\end{array}}\right.$,且(x+a)2+y2的最小值為6,a>0,則a=$\sqrt{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.把函數y=sin(2x-$\frac{π}{4}$)的圖象向左平移$\frac{π}{8}$個單位可得到y(tǒng)=sin2x的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.已知向量$\overrightarrow a$,$\overrightarrow b$滿足(2$\overrightarrow a$-$\overrightarrow b$)•($\overrightarrow a$+$\overrightarrow b$)=6,且|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.在△ABC中,內角A,B,C所對的邊分別為a,b,c,b(1-2cosA)=2acosB.
(1)證明:b=2c;
(2)若a=1,tanA=2$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.若角A,B,C是△ABC的三個內角,則下列等式中一定成立的是(  )
A.cos(A+B)=cosCB.sin(A+B)=-sinCC.cos($\frac{A}{2}$+C)=sinBD.sin$\frac{B+C}{2}$=cos$\frac{A}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知函數$f(x)=\left\{{\begin{array}{l}{{2^{-x}},x≤0}\\{{x^{\frac{1}{2}}},x>0}\end{array}}\right.$,f(x0)>1,則x0的取值范圍為(  )
A.(-∞,-1)∪(1,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-3)∪(2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知y=f(x+1)是定義在R上的周期為2的偶函數,當x∈[1,2)時,f(x)=log2x,設a=f($\frac{1}{2}$),$b=f(\frac{10}{3})$,c=f(1),則a,b,c的大小關系為(  )
A.a<c<bB.c<a<bC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.求函數$y={log}_{\frac{1}{2}}sin(\frac{π}{3}-2x)$的單調遞增區(qū)間.

查看答案和解析>>

同步練習冊答案