15.已知拋物線C:y2=4x的焦點為F,準線與x軸的交點為K,點A在C上且|AK|=$\sqrt{2}$|AF|,則△AFK的面積為( 。
A.1B.2C.4D.8

分析 過A作準線的垂線AM,根據(jù)拋物線的性質(zhì)可得|AK|=$\sqrt{2}$|AM|,得出直線AK的方程,求出A點坐標,從而得出三角形的面積.

解答 解:過A作準線的垂線,垂足為M,則AM=AF,
∴|AK|=$\sqrt{2}$|AM|,
∴直線AK的斜率為1,
又K(-1,0),∴直線AK的方程為y=x+1.
聯(lián)立方程組$\left\{\begin{array}{l}{y=x+1}\\{{y}^{2}=4x}\end{array}\right.$,解得A(1,2),
∴S△AFK=$\frac{1}{2}×2×2$=2.
故選B.

點評 本題考查了拋物線的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=|2x2-a|.
(Ⅰ)若f(0)+f(1)>$\frac{3|a|}{a}$,求實數(shù)a的取值范圍;
(Ⅱ)對任意|x|≤1,f(x)≤1恒成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,如果sinA=sinC,B=30°,角B所對的邊長b=2,則△ABC的面積為2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在數(shù)列{an}中,a1=$\frac{1}{2}$,an+1=1-$\frac{1}{{a}_{n}}$,則a10=(  )
A.2B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax+lnx(a∈R).
(1)若a=2,求曲線y=f(x)在x=1處切線的斜率;
(2)求f(x)的單調(diào)區(qū)間;
(3)若對任意x∈(0,+∞),均有f(x)<0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.復(fù)數(shù)(m2-5m+6)+(m2-2m)i為純虛數(shù),則實數(shù)m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow$=(x,-2),且$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$)
(Ⅰ)求|3$\overrightarrow{a}$+$\overrightarrow$|;
(Ⅱ)若向量$\overrightarrow{a}$-λ$\overrightarrow$與2$\overrightarrow{a}$+$\overrightarrow$平行,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知i是虛數(shù)單位,復(fù)數(shù)$\frac{5i}{1-2i}$的虛部為( 。
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦,D,E分是橢圓C的上頂點和右頂點,且S${\;}_{△DE{F}_{2}}$=$\frac{\sqrt{3}}{2}$,離心率e=$\frac{1}{2}$
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過F2的直線l與橢圓C相交于A,B兩點,求S△AOB的最大值.

查看答案和解析>>

同步練習(xí)冊答案