19.已知函數(shù)f(x)=Asin(ωx+φ)+b(A>0,ω>0)的圖象如圖所示,則f(x)的解析式為( 。
A.$f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+2$B.$f(x)=3sin({\frac{1}{3}x-\frac{π}{6}})+2$C.$f(x)=2sin({\frac{π}{6}x+\frac{π}{6}})+3$D.$f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+3$

分析 由函數(shù)的圖象的頂點坐標求出A和b,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.

解答 解:根據(jù)函數(shù)f(x)=Asin(ωx+φ)+b(A>0,ω>0)的圖象,可得A=5-3=2,b=3,
$\frac{1}{4}•\frac{2π}{ω}$=4-1=3,∴ω=$\frac{π}{6}$.
再根據(jù)五點法作圖可得$\frac{π}{6}•4$+φ=π,∴φ=$\frac{π}{3}$,故f(x)=2sin($\frac{π}{6}$x+$\frac{π}{3}$)+3,
故選:D.

點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,由五點法作圖求出φ的值,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.圓心為(3,0),而且與y軸相切的圓的標準方程為(x-3)2+y2=9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知集合A={0,1},B={x,y,z},則從集合A到集合B的映射可能有(  )種.
A.6B.8C.9D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{6}}$)+b(ω>0),且函數(shù)圖象的對稱中心到對稱軸的最小距離為$\frac{π}{4}$,當x∈[0,$\frac{π}{4}}$]時,f(x)的最大值為1.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)將函數(shù)f(x)的圖象向右平移$\frac{π}{12}$個單位長度得到函數(shù)g(x)圖象,若g(x)-3≤m≤g(x)+3在x∈[0,$\frac{π}{3}}$]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.$y=\frac{1}{x}$B.y=1g|x|C.y=cosxD.y=x2+2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知x,y滿足$\left\{\begin{array}{l}y≥2x\\ x+y≤3\\ x≥a\end{array}$且z=2x+y的最大值是其最小值的2倍,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=xlnx-2x,g(x)=-ax2+ax-2,(a>1).
(I)求函數(shù)f(x)的單調(diào)區(qū)間及最小值;
(II)證明:f(x)≥g(x)在x∈[1,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知向量$\overrightarrow{m}$=(cosα-$\frac{{\sqrt{2}}}{3}$,-1),$\overrightarrow{n}$=(sinα,1),$\overrightarrow{m}$與$\overrightarrow{n}$為共線向量,且α∈[-$\frac{π}{2}$,0].
(1)求sinα+cosα的值;             
(2)求$\frac{sin2α}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}滿足a1=$\frac{1}{8}$,an=$\frac{{{a_{n-1}}}}{{1-2{a_{n-1}}}}$(n≥2,n∈N*),設bn=$\frac{1}{a_n}$,
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)設Sn=|b1|+|b2|+…+|bn|(n∈N*),求Sn

查看答案和解析>>

同步練習冊答案