分析 (1)由題意可得:b1=$\frac{1}{{a}_{1}}$=8,bn+1-bn=$\frac{1}{{a}_{n+1}}$-$\frac{1}{a_n}$=$\frac{1-2{a}_{n}}{{a}_{n}}$-$\frac{1}{a_n}$=-2,因此數(shù)列{bn}是等差數(shù)列;
(2)由(1)可知:bn=10-2n,分類當1≤n≤5,bn≥0,Sn=$\frac{(8+10-2n)n}{2}$=-n2+9n,當n≥6時,bn≤0,Sn=2S5-Sn,即可求得Sn.
解答 (1)證明:b1=$\frac{1}{{a}_{1}}$=8,
∴bn+1-bn=$\frac{1}{{a}_{n+1}}$-$\frac{1}{a_n}$=$\frac{1-2{a}_{n}}{{a}_{n}}$-$\frac{1}{a_n}$=-2,
∴數(shù)列{bn}是以8為首項,-2為公差的等差數(shù)列;
(2)解:由(1)可得:bn=8+(-2)(n-1)=10-2n,
當1≤n≤5,bn≥0,
Sn=$\frac{(8+10-2n)n}{2}$=-n2+9n,
當n≥6時,bn≤0,
Sn=2S5-Sn=2(-25+9×5)+n2-9n=n2-9n+40,
∴Sn=$\left\{\begin{array}{l}{-{n}^{2}+9n}&{1≤n≤5}\\{{n}^{2}-9n+40}&{n≥6}\end{array}\right.$.
點評 本題考查等差數(shù)列的證明,考查等差數(shù)列通項公式及含有絕對值的數(shù)列前n項和公式求法,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+2$ | B. | $f(x)=3sin({\frac{1}{3}x-\frac{π}{6}})+2$ | C. | $f(x)=2sin({\frac{π}{6}x+\frac{π}{6}})+3$ | D. | $f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+3$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 方程組有唯一解 | B. | 方程組有唯一解或有無窮多解 | ||
C. | 方程組無解或有無窮多解 | D. | 方程組有唯一解或無解 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com