14.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.$y=\frac{1}{x}$B.y=1g|x|C.y=cosxD.y=x2+2x

分析 根據(jù)偶函數(shù)的定義判斷各個(gè)選項(xiàng)中的函數(shù)是否為偶函數(shù),再看函數(shù)是否在區(qū)間(0,+∞)上單調(diào)遞減,從而得出結(jié)論.

解答 解:對(duì)于A:函數(shù)在(0,+∞)遞減,不合題意;
對(duì)于B:y=lg|x|是偶函數(shù)且在(0,+∞)遞增,符合題意;
對(duì)于C:y=cosx是周期函數(shù),在(0,+∞)不單調(diào),不合題意;
對(duì)于D:此函數(shù)不是偶函數(shù),不合題意;
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性和奇偶性的判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,a,b,c是角A,B,C對(duì)應(yīng)的邊,向量$\overrightarrow{m}$=(a+b,-c),$\overrightarrow{n}$=(a+b,c),且$\overrightarrow{m}$•$\overrightarrow{n}$=(2+$\sqrt{3}$)ab.
(1)求角C
(2)函數(shù)f(x)=2sin(A+B)cos2(ωx)-cos(A+B)sin(2ωx)-$\frac{1}{2}$(ω>0)的相鄰兩條對(duì)稱軸分別為x=x0,x=x0+$\frac{π}{2}$,求f(x)在區(qū)間[-π,π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{{x}^{2}+ax+4}{x}$(a>0).
(1)證明函數(shù)f(x)在(0,2]上是減函數(shù),(2,+∞)上是增函數(shù);
(2)若方程f(x)=0有且只有一個(gè)實(shí)數(shù)根,判斷函數(shù)g(x)=f(x)-4的奇偶性;
(3)在(2)的條件下探求方程f(x)=m(m≥8)的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤$\frac{π}{2}}$),其圖象與直線y=-1相鄰兩個(gè)交點(diǎn)的距離為π,若f(x)>1對(duì)?x∈(-$\frac{π}{12}$,$\frac{π}{3}}$)恒成立,則φ的取值范圍是(  )
A.$[{\frac{π}{12},\frac{π}{6}}]$B.$[{\frac{π}{6},\frac{π}{2}}]$C.$[{\frac{π}{12},\frac{π}{3}}]$D.$[{\frac{π}{6},\frac{π}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知a∈R,函數(shù)f(x)=2x3-3(a+1)x2+6ax.
(I)若函數(shù)f(x)在x=3處取得極值,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)若a>$\frac{1}{2}$,函數(shù)y=f(x)在[0,2a]上的最小值是-a2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=Asin(ωx+φ)+b(A>0,ω>0)的圖象如圖所示,則f(x)的解析式為( 。
A.$f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+2$B.$f(x)=3sin({\frac{1}{3}x-\frac{π}{6}})+2$C.$f(x)=2sin({\frac{π}{6}x+\frac{π}{6}})+3$D.$f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2$\sqrt{3}$sinxsin(${\frac{π}{2}$-x)+2cos2x+a的最大值為3.
(I)求f(x)的單調(diào)增區(qū)間和a的值;
(II)把函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位得到函數(shù)y=g(x)的圖象,求g(x)在(0,$\frac{π}{2}}$)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=|x-a|+|x-5|.
(1)當(dāng)a=1時(shí),求f(x)的最小值;
(2)如果對(duì)任意的實(shí)數(shù)x,都有f(x)≥1成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.當(dāng)m≠-1時(shí),下列關(guān)于方程組$\left\{\begin{array}{l}mx+y=m+1\\ x+my=2m\end{array}\right.$的判斷,正確的是( 。
A.方程組有唯一解B.方程組有唯一解或有無(wú)窮多解
C.方程組無(wú)解或有無(wú)窮多解D.方程組有唯一解或無(wú)解

查看答案和解析>>

同步練習(xí)冊(cè)答案