9.已知函數(shù)f(x)=$\frac{1}{a-x(1-x)}$的值恒小于1,則實數(shù)a的取值范圍是( 。
A.(-∞,$\frac{1}{4}$)∪($\frac{5}{4}$,+∞)B.(-∞,$\frac{1}{4}$)C.($\frac{5}{4}$,+∞)D.以上都不對

分析 根據(jù)題意可得a-x(1-x)<0或a-x(1-x)>1恒成立,分類討論,根據(jù)二次函數(shù)的性質(zhì)即可判斷.

解答 解:∵f(x)=$\frac{1}{a-x(1-x)}$的值恒小于1,
∴$\frac{1}{a-x(1-x)}$<1,
∴a-x(1-x)<0或a-x(1-x)>1,
對于a-x(1-x)<0,即a<x-x2=-(x-$\frac{1}{2}$)2+$\frac{1}{4}$,故無論a取何值,不等式不可能恒成立,
對于a-x(1-x)>1,即a>1+x-x2=-(x-$\frac{1}{2}$)2+$\frac{5}{4}$,故a>$\frac{5}{4}$,
綜上所述a的取值范圍為($\frac{5}{4}$,+∞),
故選:C.

點評 本題考查了二次函數(shù)的最值和函數(shù)恒成立的問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x-y≤0\\ x+y≤a\end{array}\right.({a>0})$,若z=x+ay的最大值為2,則$m+\frac{a^2}{{m-\sqrt{2}}}({m>\sqrt{2}})$的最小值為(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知全集為R,集合A={y|y=3x,x≤1},B={x|x2-6x+8≤0},則A∪B=(0,4],A∩∁RB=(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},-2≤x≤0}\\{x+1,0<x≤2}\end{array}\right.$,則${∫}_{-2}^{2}$f(x)dx的值為$\frac{20}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.閱讀如圖所示的程序框圖,則輸出的S的值是( 。
A.$\frac{8}{9}$B.$\frac{9}{10}$C.$\frac{7}{8}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,一個簡單空間幾何體的三視圖與側(cè)視圖都是邊長為2的正三角形,俯視圖是正方形,則此幾何體的側(cè)面積是(  )
A.$4+4\sqrt{3}$B.8C.$4\sqrt{3}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,棱錐P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=AB=2.
(1)求證:BD⊥平面PAC;
(2)求二面角P-CD-B余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若二次函數(shù)y=x2+2x+(m+3)有兩個不同的零點,則m的取值范圍是( 。
A.(-∞,-2)B.(-∞,-2]C.(-∞,4)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)離心率為$\frac{\sqrt{6}}{3}$,焦距為2$\sqrt{2}$,拋物線C2:x2=2py(p>0)的焦點F是橢圓C1的頂點.
(Ⅰ)求C1與C2的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過點F的直線l交C2于P,Q兩點,若C1的右頂點A在以PQ為直徑的圓內(nèi),求直線l的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案