16.圓的任何一對平行切線間的距離總是相等的,即圓在任意方向都有相同的寬度,具有這種性質(zhì)的曲線可稱為“等寬曲線”.事實上存在著大量的非圓等寬曲線,以工藝學(xué)家魯列斯( Reuleaux)命名的魯列斯曲邊三角形,就是著名的非圓等寬曲線.它的畫法(如圖1):畫一個等邊三角形ABC,分別以A,B,C為圓心,邊長為半徑,作圓弧$\widehat{BC},\widehat{CA},\widehat{AB}$,這三段圓弧圍成的圖形就是魯列斯曲邊三角形.它的寬度等于原來等邊三角形的邊長.等寬曲線都可以放在邊長等于曲線寬度的正方形內(nèi)(如圖2).

在圖2中的正方形內(nèi)隨機(jī)取一點,則這一點落在魯列斯曲邊三角形內(nèi)的概率為(  )
A.$\frac{π}{8}$B.$\frac{{2π-3\sqrt{3}}}{4}$C.$\frac{{π-\sqrt{2}}}{2}$D.$\frac{{π-\sqrt{3}}}{2}$

分析 以面積為測度,分別計算面積,即可得出結(jié)論.

解答 解:設(shè)等邊三角形的邊長為1,則正方形的面積為1,
魯列斯曲邊三角形的面積為$\frac{1}{2}π-2×\frac{\sqrt{3}}{4}$=$\frac{π-\sqrt{3}}{2}$,
∴所求概率為$\frac{π-\sqrt{3}}{2}$,
故選D.

點評 本題考查幾何概型,考查概率的計算,正確求面積是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)=x•ex,g(x)=x2+2x,$h(x)=2sin(\frac{π}{6}x+\frac{2π}{3})$,若對任意的x∈R,都有h(x)-f(x)≤k[g(x)+2]成立,則實數(shù)k的取值范圍是( 。
A.$(-∞,\frac{1}{e}+1]$B.$(-2,\frac{1}{e}+3]$C.$[2+\frac{1}{e},+∞)$D.$[1+\frac{1}{e},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ln(|x-2|+|x+a|-9).
(1)當(dāng)a=3時,求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的定義域為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)$f(x)=lg(\sqrt{1+4{x^2}}-2x)+1$,則f(3)+f(-3)=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)$f(x)=\sqrt{2}cos({ωx+\frac{π}{4}})$在x=0處的切線方程為y=-3x+1,則ω=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=$\sqrt{x-1}$+1的值域為( 。
A.(0,+∞)B.(1,+∞)C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知矩形ABCD,AB=4,AD=1,點E為DC的中點,則$\overrightarrow{AE}•\overrightarrow{BE}$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等比數(shù)列{an}中,a1+a3=10,a2+a4=30,則數(shù)列{an}前5項和S5=( 。
A.81B.90C.100D.121

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}為等比數(shù)列,且a3=-4,a7=-16,則a5=( 。
A.8B.-8C.64D.-64

查看答案和解析>>

同步練習(xí)冊答案