分析 (1)根據(jù)分段函數(shù)的單調(diào)性求出函數(shù)的最大值,即可求出k的值,
(2)根據(jù)基本不等式即可求出答案
解答 解:(1)由于f(x)=$\left\{\begin{array}{l}{-x-3,x≥1}\\{-3x-1,-1<x<1}\\{x+3,x≤-1}\end{array}\right.$,
當(dāng)x≥-1時,f(x)max=f(1)=1-3=-4,
當(dāng)-1<x<1時,f(x)<f(-1)=3-1=2,
當(dāng)x≤-1時,f(x)max=f(-1)=-1+3=2,
所以k=f(x)max=f(-1)=2,
(2)由已知$\frac{{{a^2}+{c^2}}}{2}+{b^2}=2$,有(a2+b2)+(b2+c2)=4,
因為a2+b2≥2ab(當(dāng)a=b取等號),b2+c2≥2bc(當(dāng)b=c取等號),
所以(a2+b2)+(b2+c2)=4≥2(ab+bc),即ab+bc≤2,
故[b(a+c)]max=2.
點評 本題考查了絕對值不等式的解法和基本不等式的應(yīng)用,屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i≤119? | B. | i≥119? | C. | i≤60? | D. | i≥60? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m=-1 | B. | m=1 | C. | m=2 | D. | m=-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π-2 | B. | 2π-4 | C. | 3π-6 | D. | 4π-8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com