【題目】已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(﹣1)=0,f(0)=0,求出函數(shù)f(x)的零點;
(2)若f(x)同時滿足下列條件:①當(dāng)x=﹣1時,函數(shù)f(x)有最小值0,②f(1)=1求函數(shù)f(x)的解析式;
(3)若f(1)≠f(3),證明方程f(x)= [f(1)+f(3)]必有一個實數(shù)根屬于區(qū)間(1,3)

【答案】
(1)解:∵f(﹣1)=0,f(0)=0,

∴a=b;

∴f(x)=ax(x+1);

∴函數(shù)f(x)的零點是0和﹣1


(2)解:由條件①得: ,a>0;

∴b=2a,b2=4ac,

∴4a2=4ac,

∴a=c;

由條件②知:a+b+c=1,

解得,


(3)證明:令

,

,

∴g(x)=0在(1,3)內(nèi)必有一個實根,

即方程 必有一個實數(shù)根屬于(1,3).


【解析】(1)由f(﹣1)=0,f(0)=0得a=b;從而化簡f(x)=ax(x+1);從而確定零點;(2)由條件化簡可得方程 ,從而解得;(3)令 ,從而可判斷 ,從而證明

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為的圓形紙板內(nèi)有一個相同圓心的半徑為的小圓,現(xiàn)將半徑為的一枚硬幣拋到此紙板上,使整塊硬幣完全隨機(jī)落在紙板內(nèi),則硬幣與小圓無公共點的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,點,曲線 ,以極點為坐標(biāo)原點,極軸為軸正半軸建立直角坐標(biāo)系.

(1)在直角坐標(biāo)系中,求點的直角坐標(biāo)及曲線的參數(shù)方程;

(2)設(shè)點為曲線上的動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin2 +x)﹣ cos2x,
(1)求f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)當(dāng)x 時,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三棱柱中, , ,點的中點.

(I)求證:

(II)若點上的點,且滿足若二面角的余弦值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sinx,cosx), =(sin(x﹣ ),sinx),函數(shù)f(x)=2 ,g(x)=f( ).
(1)求f(x)在[ ,π]上的最值,并求出相應(yīng)的x的值;
(2)計算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,討論g(x)在[t,t+2]上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè)函數(shù).

(1)當(dāng)時,求的極值點;

(2)討論在區(qū)間上的單調(diào)性;

(3)對任意恒成立時, 的最大值為1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點中,相鄰兩個交點之間的距離為 ,且圖象上一個最低點為
(1)求f(x)的解析式;
(2)當(dāng) ,求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案