已知拋物線y=ax2+bx+c通過點(1,1),且在點(2,-1)處與直線y=x-3相切,求a、b、c的值.
分析:先求函數(shù)y=ax2+bx+c的導(dǎo)函數(shù)f′(x),再由題意知函數(shù)過點(1,1),(2,-1),且在點(2,-1)處的切線的斜率為1,即f′(2)=1,分別將三個條件代入函數(shù)及導(dǎo)函數(shù),解方程即可
解答:解:∵f(1)=1,∴a+b+c=1.
又f′(x)=2ax+b,
∵f′(2)=1,∴4a+b=1.
又切點(2,-1),∴4a+2b+c=-1.
把①②③聯(lián)立得方程組
a+b+c=1
4a+b=1
4a+2b+c=-1.
解得
a=3
b=-11
c=9

即a=3,b=-11,c=9.
點評:本題考察了導(dǎo)數(shù)的幾何意義及其應(yīng)用,利用方程的思想求參數(shù)的值
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2-1上存在關(guān)于直線x+y=0成軸對稱的兩點,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2-1的焦點是坐標(biāo)原點,則以拋物線與兩坐標(biāo)軸的三個交點為頂點的三角形面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2(a∈R)的準(zhǔn)線方程為y=-1,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+c與直線y=-bx交于A、B兩點,其中a>b>c,a+b+c=0,設(shè)線段AB在x軸上的射影為A1B1,則|A1B1|的取值范圍是( 。
A、(
3
,   2
3
)
B、(
3
,   +∞)
C、(0,   
3
)
D、(2,   2
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•牡丹江一模)已知拋物線y=ax2的準(zhǔn)線方程為y=-2,則實數(shù)a的值為
1
8
1
8

查看答案和解析>>

同步練習(xí)冊答案