2.已知函數(shù)f(x)=asinx+bx3+1(a,b∈R),f′(x)為f(x)的導函數(shù),則f(2016)+f(-2016)+f′(2017)-f′(-2017)=( 。
A.2017B.2016C.2D.0

分析 根據(jù)函數(shù)的解析式求出函數(shù)的導數(shù),結(jié)合函數(shù)的奇偶性建立方程關(guān)系進行求解即可.

解答 解:函數(shù)的導數(shù)f′(x)=acosx+3bx2,
則f′(x)為偶函數(shù),則f′(2017)-f′(-2017)=f′(2017)-f′(2017)=0,
由f(x)=asinx+bx3+1得f(2016)=asin2016+b•20163+1,
f(2016)=asin2016+b•20163+1,
f(-2016)=-asin2016-b•20163+1,
則f(2016)+f(-2016)=2,
則f(2016)+f(-2016)+f′(2017)-f′(-2017)=2+0=2,
故選:C

點評 本題主要考查函數(shù)值的計算,根據(jù)函數(shù)的導數(shù)公式,結(jié)合函數(shù)的奇偶性建立方程關(guān)系是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.設(shè)$z=\frac{i}{1-i}$(i為虛數(shù)單位),則$\frac{1}{|z|}$=( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=|x-1|+|x+a|-x-2.
(Ⅰ)當a=1時,求不等式f(x)>0的解集;
(Ⅱ)設(shè)a>-1,且存在x0∈[-a,1),使得f(x0)≤0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{2}{3}$,F(xiàn)1,F(xiàn)2分別是它的左、右焦點,且存在直線l,使F1,F(xiàn)2關(guān)于l的對稱點恰好為圓C:x2+y2-4mx-2my+5m2-4=0(m∈R,m≠0)的一條直徑的兩個端點.
(1)求橢圓E的方程;
(2)設(shè)直線l與拋物線y2=2px(p>0)相交于A,B兩點,射線F1A,F(xiàn)1B與橢圓E分別相交于點M,N,試探究:是否存在數(shù)集D,當且僅當p∈D時,總存在m,使點F1在以線段MN為直徑的圓內(nèi)?若存在,求出數(shù)集D;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知A,B是單位圓上的兩點,O為圓心,且∠AOB=90°,MN是圓O的一條直徑,點C在圓內(nèi),且滿足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),則$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值為( 。
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.-$\frac{3}{4}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.復(fù)數(shù)z=(1+i)+(-2+2i)在復(fù)平面內(nèi)對應(yīng)的點位于第二象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.若數(shù)列{An}對任意的n∈N*,都有${A_{n+1}}={A_n}^k$(k≠0),且An≠0,則稱數(shù)列{An}為“k級創(chuàng)新數(shù)列”.
(1)已知數(shù)列{an}滿足${a_{n+1}}=2{a_n}^2+2{a_n}$且${a_1}=\frac{1}{2}$,試判斷數(shù)列{2an+1}是否為“2級創(chuàng)新數(shù)列”,并說明理由;
(2)已知正數(shù)數(shù)列{bn}為“k級創(chuàng)新數(shù)列”且k≠1,若b1=10,求數(shù)列{bn}的前n項積Tn;
(3)設(shè)α,β是方程x2-x-1=0的兩個實根(α>β),令$k=\frac{β}{α}$,在(2)的條件下,記數(shù)列{cn}的通項${c_n}={β^{n-1}}•{log_{b_n}}{T_n}$,求證:cn+2=cn+1+cn,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.f(x)=sin(ωx+φ)(ω<0)向右平移$\frac{π}{12}$個單位之后圖象與g(x)=cos2x的圖象重合,則φ=( 。
A.$\frac{5}{12}$πB.$\frac{π}{3}$C.$\frac{5}{12}$π+2kπ(k∈Z)D.$\frac{π}{3}$+2kπ(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知(1-x)10=a0+a1(1+x)+a2(1+x)2+…+a10(1+x)10,則a9=( 。
A.-20B.20C.-10D.10

查看答案和解析>>

同步練習冊答案