已知R為全集,A={x|-1≤x<3},B={x|-2<x≤3},求A∩B;(∁RA)∪B.
考點:交、并、補集的混合運算
專題:集合
分析:由A與B,求出兩集合的交集,找出A補集與B的并集即可.
解答: 解:∵R為全集,A={x|-1≤x<3},B={x|-2<x≤3},
∴A∩B={x|-1≤x<3},∁RA={x|x<-1或x≥3},
則(∁RA)∪B=R.
點評:此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cos2
x
2
-
3
sinx.
(I)求 x∈[
2
3
π,
5
4
π]時函數(shù)f(x)的單調區(qū)間和值域;
(II)若α為第二象限角,且f(α-
π
3
)=
1
3
,求
cos2α
1+cos2α-sin2α
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2ax+b
(Ⅰ)若a是從0,1,2三個數(shù)中任取的一個數(shù),b是從0,1,2,3四個數(shù)中任取的一個數(shù),求f(x)為偶函數(shù)的概率;
(Ⅱ)若a=1,b是從區(qū)間[0,3]任取的一個數(shù),求方程f(x)=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+2bx2+cx-2的圖象在與x軸交點處的切線方程是y=5x-10.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)設函數(shù)g(x)=f(x)+
1
3
mx,若g(x)的極值存在,求實數(shù)m的取值范圍以及當x取何值時函數(shù)g(x)分別取得極大和極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
1
3-4ax
(a∈R),求函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有甲、乙兩個班級進行數(shù)學考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下2×2聯(lián)表:
優(yōu)秀非優(yōu)秀總計
甲班30
乙班50
合計200
已知全部200人中隨機抽取1人為優(yōu)秀的概率為
2
5

(1)請完成上面2×2聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有99%的把握認為“成績與班級有關系”
(3)從全部200人中有放回抽取3次,每次抽取一人,記被抽取的3人中優(yōu)秀的人數(shù)為X,若每次抽取得結果是相互獨立的,求X的分布列,期望E(X)和方差D(X)
參考公式與參考數(shù)據(jù)如下:
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,
概率表
P(K2≥x00.500.400.250.150.100.050.0250.0100.0050.001
x00.4550.7081.3232.0722.0763.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的對稱軸為坐標軸,與直線x+y=1交于兩點A、B,又|AB|=2
2
,AB中點與橢圓中心連線的斜率為
2
2
,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n個正整數(shù)的和是1000,求這些正整數(shù)的乘積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)是定義在[-1,1]上的增函數(shù),且f(x2-1)+f(1-x)<0,則x的取值范圍是
 

查看答案和解析>>

同步練習冊答案