4.甲、乙、丙.丁四輛玩具賽車同時從起點(diǎn)出發(fā)并做勻速直線運(yùn)動,丙車最先到達(dá)終點(diǎn).丁車最后到達(dá)終點(diǎn).若甲、乙兩車的s-t圖象如圖所示,則對于丙、丁兩車的圖象所在區(qū)域,判斷正確的是( 。
A.丙在Ⅲ區(qū)域,丁在Ⅰ區(qū)域B.丙在Ⅰ區(qū)城,丁在Ⅲ區(qū)域
C.丙在Ⅱ區(qū)域,丁在Ⅰ區(qū)域D.丙在Ⅲ區(qū)域,丁在Ⅱ區(qū)域

分析 根據(jù)路程時間圖象的性質(zhì)可知,速度即為所在直線的斜率,結(jié)合傾斜角判斷即可.

解答 解:∵丙車最先到達(dá)終點(diǎn).丁車最后到達(dá)終點(diǎn),
∴丙車速度最大,丁車速度最小,
∴丙車所在直線的傾斜角最大,丁車所在直線的傾斜角最小.
故選:A.

點(diǎn)評 本題考查了圖象的性質(zhì)和實際應(yīng)用,屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)a,b,c,d為正數(shù),且a+b+c+d=1.證明:
(1)${a^2}+{b^2}+{c^2}+{d^2}≥\frac{1}{4}$;
(2)$\frac{a^2}+\frac{b^2}{c}+\frac{c^2}6bjnkyl+\frac{d^2}{a}≥1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出S的值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若i是虛數(shù)單位,則復(fù)數(shù)$z=\frac{{1-\sqrt{3}i}}{2i}$在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于( 。
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,A=$\frac{π}{4}$,b2sin C=4$\sqrt{2}$sin B,則△ABC的面積為(  )
A.1B.3C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A=[-3,3],B=[-2,2],設(shè)M={(x,y)|x∈A,y∈B},在集合M內(nèi)隨機(jī)取出一個元素(x,y).
(1)求以(x,y)為坐標(biāo)的點(diǎn)落在圓x2+y2=4內(nèi)的概率;
(2)求以(x,y)為坐標(biāo)的點(diǎn)到直線x+y=0的距離不大于$\sqrt{2}$的概率.
(提示:可以考慮采用數(shù)形結(jié)合法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={-1,0,1},B={-2,-1,0,1,2},現(xiàn)從集合A,B中各任取一個數(shù).
(1)求這兩數(shù)之和為0的概率;
(2)若從集合A,B中取出的數(shù)分別記為a,b,求方程組$\left\{\begin{array}{l}ax+by=3\\ x+2y=2\end{array}\right.$只有一個解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某幾何體的三視圖如圖所示,則該幾何體的體積為16+8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.平面α的斜線與α所成的角為30°,那此斜線和α內(nèi)所有不過斜足的直線中所成的角的最大值為90°.

查看答案和解析>>

同步練習(xí)冊答案