13.某幾何體的三視圖如圖所示,則該幾何體的體積為16+8π.

分析 判斷幾何體的形狀,利用幾何體的體積公式求解即可.

解答 解:由三視圖可知幾何體是下部是半圓柱,上部是長(zhǎng)方體,如圖:幾何體的體積為:2×2×4+$\frac{1}{2}×{2}^{2}×π×4$=16+8π.
故答案為:16+8π.

點(diǎn)評(píng) 本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關(guān)鍵,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)是定義在(-∞,+∞)內(nèi)的可導(dǎo)函數(shù),且滿足:xf'(x)+f(x)>0,對(duì)于任意的正實(shí)數(shù)a,b,若a>b,則必有( 。
A.af(b)>bf(a)B.bf(a)>af(b)C.af(a)<bf(b)D.af(a)>bf(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.甲、乙、丙.丁四輛玩具賽車同時(shí)從起點(diǎn)出發(fā)并做勻速直線運(yùn)動(dòng),丙車最先到達(dá)終點(diǎn).丁車最后到達(dá)終點(diǎn).若甲、乙兩車的s-t圖象如圖所示,則對(duì)于丙、丁兩車的圖象所在區(qū)域,判斷正確的是( 。
A.丙在Ⅲ區(qū)域,丁在Ⅰ區(qū)域B.丙在Ⅰ區(qū)城,丁在Ⅲ區(qū)域
C.丙在Ⅱ區(qū)域,丁在Ⅰ區(qū)域D.丙在Ⅲ區(qū)域,丁在Ⅱ區(qū)域

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.△ABC中,a,b,c分別是角A,B,C的對(duì)邊,已知A=60°,$a=\sqrt{31}$,b=6,則c=1或5 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知$\frac{π}{2}<A<π$,且sinA=$\frac{4}{5}$,那么sin2A等于( 。
A.$\frac{24}{25}$B.$\frac{7}{25}$C.$-\frac{12}{25}$D.$-\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知在△ABC中,b(sinB+sinC)=(a-c)(sinA+sinC)(其中角A,B,C所對(duì)的邊分別為a,b,c)且∠B為鈍角.(1)求角A的大。
(2)若$a=\frac{{\sqrt{3}}}{2}$,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{2}$sin 2xsin φ+cos2xcos φ-$\frac{1}{2}$sin($\frac{π}{2}$+φ)(0<φ<π),其圖象過(guò)點(diǎn)($\frac{π}{6}$,$\frac{1}{2}$).
(1)求φ的值;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在[0,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{-2x-1,x≤0}\end{array}\right.$,D是由x軸和曲線y=f(x)及該曲線在點(diǎn)(1,0)處的切線所圍成的封閉區(qū)域,則z=x2+y2+2x+2y在D上的最小值為-$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,是一個(gè)幾何體的正視圖、側(cè)視圖、俯視圖,且正視圖、側(cè)視圖都是矩形,俯視圖是平行四邊形,則該幾何體的體積是( 。
A.$\frac{8\sqrt{15}}{3}$B.8$\sqrt{15}$C.$\frac{4\sqrt{15}}{3}$D.4$\sqrt{15}$

查看答案和解析>>

同步練習(xí)冊(cè)答案