17.下列說法正確的是(  )
A.“x>1”是“x>2”的充分不必要條件
B.命題“若xy=0,則x=0或y=0”的否命題為“若xy≠0,則x≠0或y≠0”
C.命題“?x∈R,2x>0”的否定是“?x0∈R,2x<0”
D.若命題“?x0∈R,x02+mx0+2m-3<0”為假命題,則m的取值范圍是[2,6]

分析 根據(jù)充要條件的定義,可判斷A;寫出原命題的否命題,可判斷B;寫出原命題的否定命題,可判斷C,求出滿足條件的m的取值范圍,可判斷D.

解答 解:“x>1”是“x>2”的必要不充分條件,故A錯(cuò)誤;
命題“若xy=0,則x=0或y=0”的否命題為“若xy≠0,則x≠0且y≠0”,故B錯(cuò)誤;
命題“?x∈R,2x>0”的否定是“?x0∈R,2x≤0”,故C錯(cuò)誤;
若命題“?x0∈R,x02+mx0+2m-3<0”為假命題,則△=m2-4(2m-3)≤0,解得:m∈[2,6],故D正確;

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,充要條件,特稱命題的否定等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),兩個(gè)焦點(diǎn)為F1(-2,0),F(xiàn)2(2,0),P是橢圓上的動(dòng)點(diǎn),且|PF1||PF2|的最大值為6.
(1)求橢圓方程;
(2)過左焦點(diǎn)的直線l交橢圓C與M、N兩點(diǎn),且滿足$\overrightarrow{OM}•\overrightarrow{ON}sinθ=\frac{{4\sqrt{6}}}{3}cosθ$$(θ≠\frac{π}{2})$,求直線l的方程(其中∠MON=θ,O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知全集U=R,集合A={x|1≤x<4},B={x|3x-1<x+5},C={x|x>a}.
(1)求A∩B;
(2)若B∩C=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知二次函數(shù)f(x)=ax2+bx+c滿足2a+$\frac{c}{2}$>b且2c<1,則含有f(x)的零點(diǎn)的一個(gè)區(qū)間是( 。
A.(0,2)B.(-1,0)C.(0,1)D.(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-ax-a(a∈R,e=2.71828…).
(Ⅰ)當(dāng)a=e時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a=1時(shí),求證:對(duì)任意的正整數(shù)n,都有$\frac{2}{2+1}$×$\frac{{2}^{2}}{{2}^{2}+1}$×…×$\frac{{2}^{n}}{{2}^{n}+1}$>$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若關(guān)于x的不等式0≤x2+$\frac{7}{9}$x-$\frac{{2}^{n}}{({2}^{n}+1)^{2}}$<$\frac{2}{9}$,對(duì)任意n∈N+恒成立,則x的取值范圍是{-1,$\frac{2}{9}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知A為△ABC的內(nèi)角,在log2cosA有意義的條件下,事件“l(fā)og2cosA<-1”發(fā)生的概率為( 。
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C的兩焦點(diǎn)分別為F1(-2$\sqrt{2}$,0)、F2(2$\sqrt{2}$,0),長(zhǎng)軸長(zhǎng)為6,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若PF2⊥x軸,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=ax|logax|-1有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(1,10)B.(1,+∞)C.(0,1)D.(10,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案