由y=f(x)確定數(shù)列{an}:an=f(n).若y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn}:bn=f-1(n),則稱(chēng){bn}是{an}的“反數(shù)列”.
(1)若f(x)=2
x
確定的數(shù)列{an}的反數(shù)列為{bn},求bn
(2)對(duì)(1)中{bn},記Tn=
1
bn+1
+
1
bn+2
+…+
1
b2n
,若Tn
1
2
loga(1-2a)
對(duì)n∈N*恒成立,求實(shí)數(shù)a的取值范圍.
(3)設(shè)cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)
(λ為正整數(shù)),若數(shù)列{cn}的反數(shù)列為{dn},且{cn}與{dn}的公共項(xiàng)組成的數(shù)列為{tn}(公共項(xiàng)tk=cp=dq,其中k,p,q為正整數(shù)),求數(shù)列{tn}前n項(xiàng)和Sn
(1)f(x)=2
x
的反函數(shù)為f-1(x)=
1
4
x2(x≥0)
,
bn=
1
4
n2(n∈N*)

(2)由(1)的結(jié)果知
1
bk
=
2
k
(k∈N*)
,
Tn=
2
n+1
+
2
n+2
+…+
2
2n

Tn+1=
2
n+2
+…+
2
2n
+
2
2n+1
+
2
2n+2
,
Tn+1-Tn=
2
2n+1
+
2
2n+2
-
2
n+1
2
2n+2
+
2
2n+2
-
2
n+1
=0
,
即{Tn}單調(diào)增,
從而Tn
1
2
loga(1-2a)
對(duì)n∈N*恒成立等價(jià)于
1
2
loga(1-2a)<T1=1

化為loga(1-2a)<2,
由1-2a>0知a<
1
2

故loga(1-2a)<2等價(jià)于1-2a>2a2,
結(jié)合a>0,
解得0<a<
2
-1

(3)分兩種情形.
10當(dāng)λ為偶數(shù)時(shí)f(x)=
1+(-1)λ
2
3x+
1-(-1)λ
2
•(2x-1)=3x,f-1(x)=log3x
,
故cn=3n,dn=log3n,
令cp=dq,得3p=log3q?q=33p(p∈N*)
即{cn}的項(xiàng)都是{dn}的項(xiàng),
tn=cn=3n,Sn=
3
2
(3n-1)(n∈N*)

20當(dāng)λ為奇數(shù)時(shí)f(x)=
1+(-1)λ
2
3x+
1-(-1)λ
2
•(2x-1)=2x-1,f-1(x)=
x
2
+1
,
cn=2n-1,dn=
n
2
+1
,
令cp=dq,得2p-1=
q
2
+1?q=4p-3(p∈N*)
,
即{cn}的項(xiàng)都是{dn}的項(xiàng),
故tn=cn=2n-1,Sn=n2(n∈N*).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項(xiàng)公式;
(2)對(duì)(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ為正整數(shù))
,若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項(xiàng)組成的數(shù)列為{tn},求數(shù)列{tn}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對(duì)于任意n?N*,都有bn=an,則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項(xiàng)之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n
;
(3)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由y=f(x)確定數(shù)列{an}:an=f(n).若y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn}:bn=f-1(n),則稱(chēng){bn}是{an}的“反數(shù)列”.
(1)若f(x)=2
x
確定的數(shù)列{an}的反數(shù)列為{bn},求bn
(2)對(duì)(1)中{bn},記Tn=
1
bn+1
+
1
bn+2
+…+
1
b2n
,若Tn
1
2
loga(1-2a)
對(duì)n∈N*恒成立,求實(shí)數(shù)a的取值范圍.
(3)設(shè)cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)
(λ為正整數(shù)),若數(shù)列{cn}的反數(shù)列為{dn},且{cn}與{dn}的公共項(xiàng)組成的數(shù)列為{tn}(公共項(xiàng)tk=cp=dq,其中k,p,q為正整數(shù)),求數(shù)列{tn}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•浦東新區(qū)一模)由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱(chēng)數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求bn;
(2)設(shè)cn=3n,數(shù)列{cn}與其反數(shù)列{dn}的公共項(xiàng)組成的數(shù)列為{tn}
(公共項(xiàng)tk=cp=dq,k、p、q為正整數(shù)).求數(shù)列{tn}前10項(xiàng)和S10;
(3)對(duì)(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案