分析 (1)把圓C的方程x2+y2-2x+4y-3=0化為標準方程為(x-1)2+(y+2)2=8,得到圓心為C(1,-2)和半徑,由圓心C到直線l的距離等于圓的半徑列出方程,求解即可得實數t的值;
(2)由(1)知,圓心到直線l的距離$d=\frac{|3+t|}{\sqrt{2}}$,且|MN|=4,r2=8,解得d,進一步求出實數t的值.
解答 解:圓C的方程x2+y2-2x+4y-3=0化為標準方程為(x-1)2+(y+2)2=8,
故圓心為C(1,-2),且半徑$r=2\sqrt{2}$,
(1)∵直線l與圓C相切,∴圓心C到直線l的距離等于圓的半徑,
即$\frac{|1-(-2)+t|}{\sqrt{1+(-1)^{2}}}=2\sqrt{2}$,整理得|3+t|=4,解得t=1或t=-7;
(2)由(1)知,圓心到直線l的距離$d=\frac{|3+t|}{\sqrt{2}}$,
又|MN|=$2\sqrt{{r}^{2}-3ftfp95^{2}}=4$,r2=8,解得d=2,∴$\frac{|3+t|}{\sqrt{2}}=2$即$t=-3±2\sqrt{2}$.
點評 本題考查了圓的切線方程,考查了點到直線的距離公式的應用,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $cos(2x-\frac{π}{6})$ | B. | $sin(2x-\frac{π}{6})$ | C. | $cos(2x-\frac{π}{3})$ | D. | $sin(2x-\frac{π}{3})$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 向右平移$\frac{π}{12}$個單位 | B. | 向左平移$\frac{π}{4}$個單位 | ||
C. | 向左平移$\frac{π}{12}$個單位 | D. | 向右平移$\frac{π}{4}$個單位 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com