分析 (1)利用同角三角函數關系求得$cosα=-\frac{{\sqrt{2}}}{2}$,所以將f(α)代入函數解析式,由特殊角的三角函數值進行解答即可;
(2)由二倍角公式和輔助角公式將函數轉化為正弦函數:f(x)=$\frac{{\sqrt{2}}}{2}sin(2x+\frac{π}{4})$,根據正弦函數的性質解答.
解答 解:(1)因為$\frac{π}{2}<α<π$,sinα=$\frac{\sqrt{2}}{2}$,
所以$cosα=-\frac{{\sqrt{2}}}{2}$,
所以$f(α)=\frac{{\sqrt{2}}}{2}×(-\frac{{\sqrt{2}}}{2}-\frac{{\sqrt{2}}}{2})+\frac{1}{2}$=$-\frac{1}{2}$.
(2)因為$f(x)=sinxcosx-{sin^2}x+\frac{1}{2}$
=$\frac{1}{2}sin2x-\frac{1-cos2x}{2}+\frac{1}{2}$=$\frac{1}{2}sin2x+\frac{1}{2}cos2x$=$\frac{{\sqrt{2}}}{2}sin(2x+\frac{π}{4})$
所以最小正周期$T=\frac{2π}{2}=π$.
由$2kπ-\frac{π}{2}≤2x+\frac{π}{4}≤2kπ+\frac{π}{2},k∈Z$,
得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈Z.
所以f(x)的單調遞增區(qū)間為[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.
點評 本題主要考查三角函數的圖象和性質,利用三角函數公式將函數進行化簡是解決本題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 63 | B. | 64 | C. | 65 | D. | 66 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com