16.函數(shù)f(x)=$\frac{{3{x^2}}}{{\sqrt{1-x}}}$+ln(x+1)的定義域?yàn)椋?1,1).

分析 由分母中根式內(nèi)部的代數(shù)式大于0,對(duì)數(shù)式的真數(shù)大于0聯(lián)立不等式組求解.

解答 解:由$\left\{\begin{array}{l}{1-x>0}\\{x+1>0}\end{array}\right.$,解得:-1<x<1.
∴函數(shù)f(x)=$\frac{{3{x^2}}}{{\sqrt{1-x}}}$+ln(x+1)的定義域?yàn)椋?1,1).
故答案為:(-1,1).

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知點(diǎn)P(t,t),點(diǎn)M是圓O1:x2+(y-1)2=$\frac{1}{4}$上的動(dòng)點(diǎn),點(diǎn)N是圓O2:(x-2)2+y2=$\frac{1}{4}$上的動(dòng)點(diǎn),則|PN|-|PM|的最大值是( 。
A.1B.$\sqrt{5}$-2C.2+$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知a=($\frac{1}{2}$)${\;}^{\frac{1}{2}}$,b=($\frac{1}{3}$)-2,c=log${\;}_{\frac{1}{2}}$2,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}為等差數(shù)列,首項(xiàng)a1=1,公差d=2,則a5=(  )
A.6B.9C.25D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若x>0,y>0,且$\frac{1}{x}$+$\frac{3}{y}$=1,則x+3y的最小值為16;則xy的最小值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{log_2}(3-x)\\ f(x-1)-f(x-2)\end{array}\right.\begin{array}{l}x≤0\\ x>0\end{array}$,則f(11)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x3-3ax.
(Ⅰ)若函數(shù)f(x)在x=1處的切線斜率為2,求實(shí)數(shù)a;
(Ⅱ)若a=1,求函數(shù)f(x)在區(qū)間[0,3]的最值及所對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若直線y=x+b與曲線y=3-$\sqrt{4x-{x}^{2}}$有公共點(diǎn),則b的取值范圍是( 。
A.[1-$\sqrt{2}$,1+$\sqrt{2}$]B.[1-$\sqrt{2}$,3]C.[1-2$\sqrt{2}$,3]D.[-1,1+$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.計(jì)算(lg$\frac{1}{4}$-lg25)×100${\;}^{\frac{1}{2}}$-20.

查看答案和解析>>

同步練習(xí)冊(cè)答案