15.已知雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),點F為E的左焦點,點P為E上位于第一象限內(nèi)的點,P關(guān)于原點的對稱點為Q,且滿足|PF|=3|FQ|,若|OP|=b,則E的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

分析 由題意可知:四邊形PFQF1為平行四邊,利用雙曲線的定義及性質(zhì),求得∠OPF1=90°,在△QPF1中,利用勾股定理即可求得a和b的關(guān)系,根據(jù)雙曲線的離心率公式即可求得離心率e.

解答 解:由題意可知:雙曲線的右焦點F1,由P關(guān)于原點的對稱點為Q,
則丨OP丨=丨OQ丨,
∴四邊形PFQF1為平行四邊,
則丨PF1丨=丨FQ丨,丨PF丨=丨QF1丨,
由|PF|=3|FQ|,根據(jù)橢圓的定義丨PF丨-丨PF1丨=2a,
∴丨PF1丨=a,|OP|=b,丨OF1丨=c,
∴∠OPF1=90°,
在△QPF1中,丨PQ丨=2b,丨QF1丨=3a,丨PF1丨=a,
∴則(2b)2+a2=(3a)2,整理得:b2=2a2,
則雙曲線的離心率e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=$\sqrt{3}$,
故選B.

點評 本題考查雙曲線的簡單幾何性質(zhì)簡單幾何性質(zhì),考查數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an},{bn}滿足${a_1}=1,{a_{n+1}}=1-\frac{1}{{4{a_n}}}$,${b_n}=\frac{2}{{2{a_n}-1}}$,其中n∈N+
(I)求證:數(shù)列{bn}是等差數(shù)列,并求出數(shù)列{an}的通項公式;
(II)設(shè)${c_n}=\frac{{4{a_n}}}{n+1}$,求數(shù)列{cncn+2}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,∠A的外角平分線交BC的延長線于D,用正弦定理證明:$\frac{AB}{AC}$=$\frac{BD}{DC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=x2+ax+b2,若a是從區(qū)間[0,3]內(nèi)任取的一個數(shù),b是從區(qū)間[0,2]內(nèi)任取的一個數(shù),則f(x)的圖象全在x軸上方的概率是(  )
A.$\frac{3}{8}$B.$\frac{5}{8}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.橢圓的焦點為F1,F(xiàn)2,橢圓上存在點P使得$∠{F_1}P{F_2}=\frac{2π}{3}$,則橢圓的離心率e的取值范圍是(  )
A.$[{\frac{{\sqrt{3}}}{2},1})$B.$[{\frac{1}{2},1})$C.$({0,\frac{{\sqrt{3}}}{2}}]$D.$({0,\frac{1}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓E的一個頂點為A(0,-1),焦點在x軸上,若橢圓右焦點到橢圓E的中心的距離是$\sqrt{2}$
(1)求橢圓E的方程;
(2)設(shè)直線l:y=kx+1(k≠0)與該橢圓交于不同的兩點B,C,若坐標原點O到直線l的距離為$\frac{\sqrt{3}}{2}$,求△BOC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,經(jīng)過點($\sqrt{3}$,$\frac{1}{2}$)
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點M(-1,0)作直線交橢圓于A,B兩點,O是坐標原點,求△OAB的面積的最大值,并求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.過拋物線y2=2px(p>0)的焦點F作直線交拋物線于A,B,若S△OAF=4S△OBF,則直線AB的斜率為( 。
A.±$\frac{3}{5}$B.±$\frac{4}{5}$C.±$\frac{3}{4}$D.±$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.以下四個命題中,其中真命題的個數(shù)為( 。
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;
②對于命題p:?x∈R,使得x2+x+1<0.則¬p:?x∈R,均勻x2+x+1≥0
③“x<0”是“l(fā)n(x+1)<0”的充分不必要條件;
④“若x+y=0,則x,y互為相反數(shù)”的逆命題.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案