6.定義在R上的函數(shù)f(x)滿足:對任意的x1,x2∈R(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,則( 。
A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

分析 由已知中函數(shù)f(x)滿足:對任意的x1,x2∈R(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,可得:函數(shù)f(x)在R上單調(diào)遞減,進(jìn)而得到答案.

解答 解:∵函數(shù)f(x)滿足:對任意的x1,x2∈R(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,
∴函數(shù)f(x)在R上單調(diào)遞減,
∵3>1>-2,
∴f(3)<f(1)<f(-2),
故選:D

點(diǎn)評 本題考查的知識點(diǎn)是抽象函數(shù)及其應(yīng)用,函數(shù)的單調(diào)性,由已知條件分析出函數(shù)的單調(diào)性是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在f(x)=sinωx+acosωx的圖象與直線y=$\frac{1}{2}\sqrt{{a^2}+1}$的交點(diǎn)中,三個(gè)相鄰交點(diǎn)的橫坐標(biāo)分別為π,3π,7π,則f(x)的單調(diào)遞減區(qū)間為[6kπ+2π,6kπ+5π](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx,$g(x)=\frac{1}{2}ax+b$.
(1)若f(x)與g(x)在x=1處相切,試求g(x)的表達(dá)式;
(2)若$φ(x)=\frac{m(x-1)}{x+1}-f(x)$在[1,+∞)上是減函數(shù),求實(shí)數(shù)m的取值范圍;
(3)證明不等式:$\frac{2n}{n+1}<$$\frac{1}{ln2}+\frac{1}{ln3}+\frac{1}{ln4}+…+\frac{1}{ln(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.F1,F(xiàn)2分別為橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左、右焦點(diǎn),A為橢圓上一點(diǎn),且$\overrightarrow{OB}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{O{F}_{1}}$),$\overrightarrow{OC}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{O{F}_{2}}$),則|$\overrightarrow{OB}$|+|$\overrightarrow{OC}$|=(  )
A.2$\sqrt{5}$B.2C.6D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖直三棱柱ABC-A1B1C1的底面是邊長為4的正三角形,E、F分別是BC,CC1的中點(diǎn),
(1)證明:平面AEF⊥平面B1BCC1
(2)設(shè)AB的中點(diǎn)為D,∠CA1D=45°,求三棱錐F-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=lnx-3x,則曲線y=f(x)在點(diǎn)(1,-3)處的切線方程是2x+y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,已知角A,B,C的對邊分別為a,b,c,且a=5,b=6,c=7,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若{$\frac{1}{{a}_{n}+1}$}為等差數(shù)列,a3=2,a7=1,則a11=( 。
A.0B.$\frac{1}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點(diǎn)A(l,2)在直線x+y+a=0的上方的平面區(qū)域,則實(shí)數(shù)a的取值范圍是a>-3.

查看答案和解析>>

同步練習(xí)冊答案