5.已知f(x)=|ax-1|,不等式f(x)≤3的解集是{x|-1≤x≤2}.
(Ⅰ)求a的值;
(II)若$\frac{f(x)+f(-x)}{3}$<|k|存在實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

分析 (Ⅰ)通過(guò)討論a的范圍,求出不等式的解集,根據(jù)對(duì)應(yīng)關(guān)系求出a的值即可;
(Ⅱ)根據(jù)不等式的性質(zhì)求出$\frac{f(x)+f(-x)}{3}$的最小值,得到關(guān)于k的不等式,解出即可.

解答 解:(Ⅰ)由|ax-1|≤3,得-3≤ax-1≤3,解得:-2≤ax≤4,
a>0時(shí),-$\frac{2}{a}$≤x≤$\frac{4}{a}$,
而f(x)≤3的解集是{x|-1≤x≤2},
故$\left\{\begin{array}{l}{-\frac{2}{a}=-1}\\{\frac{4}{a}=2}\end{array}\right.$,解得:a=2;
a<0時(shí),$\frac{4}{a}$≤x≤-$\frac{2}{a}$,
不等式f(x)≤3的解集是{x|-1≤x≤2},
故$\left\{\begin{array}{l}{-\frac{2}{a}=2}\\{\frac{4}{a}=-1}\end{array}\right.$,以a=2;
(Ⅱ)$\frac{f(x)+f(-x)}{3}=\frac{|2x-1|+|2x+1|}{3}≥\frac{|2x-1-2x-1|}{3}$=$\frac{2}{3}$,
故要使$\frac{f(x)+f(-x)}{3}$<|k|存在實(shí)數(shù)解,只需|k|>$\frac{2}{3}$,
解得k>$\frac{2}{3}$或k<-$\frac{2}{3}$,
∴實(shí)數(shù)k取值范圍是(-∞,-$\frac{2}{3}$)∪($\frac{2}{3}$,+∞).

點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問(wèn)題,考查分類(lèi)討論思想以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年河南省商丘市高一文下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)向量滿足的最大值等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年河北省保定市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)y=的值域是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知知F1,F(xiàn)2是橢圓和雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且$∠{F_1}P{F_2}=\frac{π}{3}$,橢圓和雙曲線的離心率分別為e1、e2,則$\frac{1}{{{e_1}^2}}+\frac{3}{{{e_2}^2}}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,A是雙曲線C的左頂點(diǎn),P(-$\frac{{a}^{2}}{c}$,yp)在雙曲線的一條漸近線上,M為線段F1P的中點(diǎn),且F1P⊥AM,則該雙曲線C的漸近線為( 。
A.y=±$\sqrt{3}$xB.y=±2xC.y=±$\sqrt{2}$xD.y=±$\sqrt{5}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知角α滿足條件sin2α<0,sinα-cosα<0,則α在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=2sin$\frac{x}{2}$cos$\frac{x}{2}$-2$\sqrt{3}$sin2$\frac{x}{2}$+$\sqrt{3}$
(Ⅰ)y=f(x)的圖象可由y=sinx的圖象經(jīng)過(guò)怎樣的變換得到?
(Ⅱ)若y=f(x+φ)的一個(gè)對(duì)稱(chēng)中心為($\frac{π}{3}$,0),求φ的值;
(Ⅲ)設(shè)當(dāng)x=θ時(shí),函數(shù)g(x)=f(x)+sinx取得最大值,求cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列區(qū)間中,方程2x+2x-6=0有解的區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過(guò)F作AF的垂線與雙曲線的兩條漸近線交于B,C兩點(diǎn),過(guò)B,C分別作AC,AB的垂線,兩垂線交于點(diǎn)D,若D到直線BC的距離小于2(a+$\sqrt{{a}^{2}+^{2}}$),則該雙曲線的離心率的取值范圍是( 。
A.(1,2)B.(1,$\sqrt{2}$)C.($\sqrt{2}$,2)D.($\sqrt{2}$,$\sqrt{3}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案