【題目】已知,函數(shù).

1)討論的單調(diào)性;

2)設(shè),若的最大值為,求的取值范圍.

【答案】1)見(jiàn)解析(2)當(dāng)時(shí),;當(dāng)時(shí),.

【解析】

1)根據(jù)函數(shù)解析式,先討論當(dāng)兩種情況.當(dāng)時(shí)易判斷單調(diào)遞減,當(dāng)時(shí),討論對(duì)稱(chēng)軸與區(qū)間的關(guān)系,即可判斷單調(diào)性.

2)根據(jù)(1)中所得在不同范圍內(nèi)的單調(diào)情況分類(lèi)討論. 當(dāng),遞減結(jié)合二次函數(shù)與絕對(duì)值函數(shù)的性質(zhì),并由的最大值即可求得的值,進(jìn)而得的取值范圍;當(dāng)時(shí),遞增,遞減,同理解絕對(duì)值不等式可求得的取值范圍,進(jìn)而得的取值范圍.

1)①當(dāng)時(shí),,單調(diào)遞減

②當(dāng)時(shí),時(shí),單調(diào)遞減

③當(dāng)時(shí),時(shí),遞增,遞減

④當(dāng)時(shí),不成立,所以無(wú)解.

綜上所述,當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),遞增,遞減

2)①當(dāng)時(shí),遞減,

,,

,

,

,

.

.

②當(dāng)時(shí),遞增,遞減,

,,

,

,同時(shí),

又∵,

,

又∵,

且可得遞增,

所以.

綜上所述, 當(dāng)時(shí),;當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓錐的頂點(diǎn)為,底面圓心為,母線長(zhǎng)為,,、是底面半徑,且:為線段的中點(diǎn),為線段的中點(diǎn),如圖所示:

1)求圓錐的表面積;

2)求異面直線所成的角的大小,并求、兩點(diǎn)在圓錐側(cè)面上的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

是函數(shù)的極值點(diǎn),1是函數(shù)的一個(gè)零點(diǎn),求的值;

當(dāng)時(shí),討論函數(shù)的單調(diào)性;

若對(duì)任意,都存在,使得成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,圓.

(Ⅰ)設(shè)直線被圓所截得的弦的中點(diǎn)為,判斷點(diǎn)與圓的位置關(guān)系;

(Ⅱ)設(shè)圓被圓截得的一段圓弧(在圓內(nèi)部,含端點(diǎn))為,若直線與圓弧只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的倍(橫坐標(biāo)不變),再向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,設(shè)函數(shù).

1)對(duì)函數(shù)的解析式;

2)若對(duì)任意,不等式恒成立,求的最小值;

3)若內(nèi)有兩個(gè)不同的解,求的值(用含的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)若對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過(guò)A作AE⊥CD,垂足為E,現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.

(1)求證:BC⊥面CDE;

(2)在線段AE上是否存在一點(diǎn)R,使得面BDR⊥面DCB,若存在,求出點(diǎn)R的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平行四邊形中,點(diǎn)邊的中點(diǎn),將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且

(1)求證; 平面平面

(2)若平面和平面的交線為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】出租車(chē)幾何學(xué)是由十九世紀(jì)的赫爾曼·閔可夫斯基所創(chuàng)立的。在出租車(chē)幾何學(xué)中,點(diǎn)還是形如的有序?qū)崝?shù)對(duì),直線還是滿足的所有組成的圖形,角度大小的定義也和原來(lái)一樣,直角坐標(biāo)系內(nèi)任意兩點(diǎn)定義它們之間的一種“距離”:,請(qǐng)解決以下問(wèn)題:

(1)求線段上一點(diǎn)到點(diǎn)的“距離”;

(2)定義:“圓”是所有到定點(diǎn)“距離”為定值的點(diǎn)組成的圖形,求“圓”上的所有點(diǎn)到點(diǎn)的“距離”均為的“圓”方程,并求該“圓”圍成的圖形的面積;

(3)若點(diǎn)到點(diǎn)的“距離”和點(diǎn)到點(diǎn)的“距離”相等,其中實(shí)數(shù)滿足,求所有滿足條件的點(diǎn)的軌跡的長(zhǎng)之和.

查看答案和解析>>

同步練習(xí)冊(cè)答案