17.如果正整數(shù)M的各位數(shù)字均不為4,且各位數(shù)字之和為6,則稱M為“幸運(yùn)數(shù)”,則四 位正整數(shù)中的“幸運(yùn)數(shù)”共有(  )
A.45個(gè)B.41個(gè)C.40個(gè)D.38個(gè)

分析 根據(jù)各位數(shù)字之和為6,這樣的四位數(shù),由0,1,2,3,5,6幾個(gè)數(shù)字組成,分0出現(xiàn)的情況,即可得出結(jié)論.

解答 解:根據(jù)各位數(shù)字之和為6,這樣的四位數(shù),由0,1,2,3,5,6幾個(gè)數(shù)字組成.有以下幾種情況,
當(dāng)四位數(shù)中有3個(gè)0出現(xiàn)時(shí),6+0+0+0,共1個(gè);
當(dāng)四位數(shù)中有2個(gè)0出現(xiàn)時(shí),5+1+0+0;3+3+0+0,共9個(gè);
當(dāng)四位數(shù)中有1個(gè)0出現(xiàn)時(shí),1+2+3+0;2+2+2+0,有21個(gè);
當(dāng)四位數(shù)中沒有0出現(xiàn)時(shí),1+1+1+3;1+1+2+2,有${C}_{4}^{2}+{C}_{4}^{1}$=10個(gè),
把各類別數(shù)分別相加為1+9+21+10=41(種),
故選B.

點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題,考查組合知識(shí),正確分類討論是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(1og2x)=x-1,那么f(lg2)=2lg2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)a=lg2,b=20.5,$c=cos\frac{3}{4}π$,則a,b,c按由小到大的順序是c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}滿足:2a1+22a2+23a3+…+2nan=n(n∈N*),bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$,設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,則S1•S2•S3•…•S10=$\frac{1}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=sinωx+$\sqrt{3}$cosωx+1(ω>0)的最小正周期為π,當(dāng)x∈[m,n]時(shí),f(x)至少有5個(gè)零點(diǎn),則n-m的最小值為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.六名大四學(xué)生(其中4名男生、2名女生)被安排到A、B、C三所學(xué)校實(shí)習(xí),每所學(xué)校2人,且2名女生不到同一學(xué)校,也不到C學(xué)校,男生甲不到A學(xué)校,則不同的安排方法共有( 。
A.24B.36C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)等差數(shù)列{an}的公差為d,且2a1=d,2an=a2n-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{{a}_{n}}{{2}^{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點(diǎn)M在線段AB上,且|AM|=1,$|MB|=\sqrt{2}$,當(dāng)線段AB的兩個(gè)端點(diǎn)A、B分別在x軸、y軸上滑動(dòng)時(shí),動(dòng)點(diǎn)M的軌跡記為C.
(1)求C的方程;
(2)過點(diǎn)P(0,1)且互相垂直的兩條直線交C于E,F(xiàn)(E,F(xiàn)異于點(diǎn)P)兩點(diǎn),當(dāng)△PEF的外接圓的圓心在直線y=x上時(shí),求直線EF的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.我們知道:“心有靈犀”一般是對(duì)人的心理活動(dòng)非常融洽的一種描述,它也可以用數(shù)學(xué)來定義:甲、乙兩人都在{1,2,3,4,5,6}中說一個(gè)數(shù),甲說的數(shù)記為a,乙說的數(shù)記為b,若|a-b|≤1,則稱甲、乙兩人“心有靈犀”,由此可以得到甲、乙兩人“心有靈犀”的概率是( 。
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

查看答案和解析>>

同步練習(xí)冊(cè)答案