1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的離心率為2,則該雙曲線的漸近線方程為( 。
A.x±y=0B.$x±\sqrt{3}y=0$C.$\sqrt{3}x±y=0$D.2x±y=0

分析 根據(jù)題意,得雙曲線的漸近線方程為y=±$\frac{a}$x.再由雙曲線離心率為2,得到c=2a,由定義知b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3}$a,代入即得此雙曲線的漸近線方程.

解答 解:∵雙曲線的方程是$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0),
∴雙曲線漸近線為y=±$\frac{a}$x.
又∵離心率為e=$\frac{c}{a}$=2,
∴c=2a,
∴b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3}$a,
由此可得雙曲線漸近線為y=±$\frac{\sqrt{3}a}{a}$x=±$\sqrt{3}$x,即:
故答案為:$\sqrt{3}x±y=0$.
故選:C.

點評 本題給出雙曲線的離心率,求雙曲線的漸近線方程,著重考查了雙曲線的標準方程與基本概念,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=x-alnx,a∈R.
(Ⅰ)研究函數(shù)f(x)的單調(diào)性;
(Ⅱ)設函數(shù)f(x)有兩個不同的零點x1、x2,且x1<x2
(1)求a的取值范圍;               
(2)求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知四棱錐的正視圖與俯視圖如圖所示,該四棱錐的體積為24,則四棱錐的側(cè)視圖面積為6,四棱錐的表面積為60.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.生產(chǎn)甲乙兩種精密電子產(chǎn)品,用以下兩種方案分別生產(chǎn)出甲乙產(chǎn)品共3件,現(xiàn)對這兩種方案生產(chǎn)的產(chǎn)品分別隨機調(diào)查了100次,得到如下統(tǒng)計表:
①生產(chǎn)2件甲產(chǎn)品和1件乙產(chǎn)品
正次品甲正品
甲正品
乙正品
甲正品
甲正品
乙次品
甲正品
甲次品
乙正品
甲正品
甲次品
乙次品
甲次品
甲次品
乙正品
甲次品
甲次品
乙次品
頻  數(shù)15201631108
②生產(chǎn)1件甲產(chǎn)品和2件乙產(chǎn)品
正次品乙正品
乙正品
甲正品
乙正品
乙正品
甲次品
乙正品
乙次品
甲正品
乙正品
乙次品
甲次品
乙次品
乙次品
甲正品
乙次品
乙次品
甲次品
頻  數(shù)81020222020
已知生產(chǎn)電子產(chǎn)品甲1件,若為正品可盈利20元,若為次品則虧損5元;生產(chǎn)電子產(chǎn)品乙1件,若為正品可盈利30元,若為次品則虧損15元.
(1)按方案①生產(chǎn)2件甲產(chǎn)品和1件乙產(chǎn)品,求這3件產(chǎn)品平均利潤的估計值;
(2)從方案①②中選其一,生產(chǎn)甲乙產(chǎn)品共3件,欲使3件產(chǎn)品所得總利潤大于30元的機會多,應選用哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,已知橢圓C1的中心在原點O,長軸左、右端點M、N在x軸上,橢圓C2的短軸為MN,且C1、C2的離心率都為e,直線l⊥MN,l與C1交于兩點,與C2交于兩點,這四點縱坐標從大到小依次為A、B、C、D.
(1)設$e=\frac{1}{2}$,求|BC|與|AD|的比值;
(2)若存在直線l,使得BO∥AN,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.2017年3月27日,一則“清華大學要求從2017級學生開始,游泳達到一定標準才能畢業(yè)”的消息在體育界和教育界引起了巨大反響.游泳作為一項重要的求生技能和運動項目受到很多人的喜愛.其實,已有不少高校將游泳列為必修內(nèi)容.某中學為了解2017屆高三學生的性別和喜愛游泳是否有關(guān),對100名高三學生進行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳不喜歡游泳合計
男生10
女生20
合計
已知在這100人中隨機抽取1人,抽到喜歡游泳的學生的概率為$\frac{3}{5}$.
(Ⅰ)請將上述列聯(lián)表補充完整;
(Ⅱ)判斷是否有99.9%的把握認為喜歡游泳與性別有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
p(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(bmodm),例如10≡4(bmod6),如圖程序框圖的算法源于我國古代《孫子算經(jīng)》中的“孫子定理”的某一環(huán)節(jié),執(zhí)行該框圖,輸入a=2,b=3,c=5,則輸出的N=( 。
A.6B.9C.12D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,底面ABCD是梯形,AB∥CD,PD⊥平面ABCD,BD⊥DC,PD=BD=DC=$\frac{1}{2}$AB,E為PC中點.
( I)證明:平面BDE⊥平面PBC;
( II)若VP-ABCD=$\sqrt{2}$,求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知點M(x,y)為平面區(qū)域D:$\left\{\begin{array}{l}{x-y≥0}\\{y-\frac{1}{x}≤0}\\{y≥a,(0<a<1)}\end{array}\right.$內(nèi)的一個動點,若z=$\frac{y+1}{x}$的最大值為3,則區(qū)域D的面積為( 。
A.ln2+$\frac{5}{8}$B.ln2-$\frac{1}{2}$C.ln2+$\frac{1}{8}$D.ln2-$\frac{3}{8}$

查看答案和解析>>

同步練習冊答案