分析 (Ⅰ)取AD中點(diǎn)E,連接PE,BE,推導(dǎo)出PE⊥AD,BE⊥AD,從而AD⊥平面BPE,AD⊥PB.
(Ⅱ)以E為坐標(biāo)原點(diǎn),EA,EB分別為x,y軸,過E作直線垂直于底平面為z軸建立空間直角坐標(biāo)系,利用向量法能求出二面角A-PB-C平面角的余弦值.
解答 證明:(Ⅰ)取AD中點(diǎn)E,連接PE,BE,
∵△ABD,△APD為等邊三角形
∴PE⊥AD,BE⊥AD,
∵PE∩BE=E,∴AD⊥平面BPE,
∵PB?平面BPE,∴AD⊥PB.
(Ⅱ)以E為坐標(biāo)原點(diǎn),EA,EB分別為x,y軸,
過E作直線垂直于底平面為z軸建立空間直角坐標(biāo)系,
則E(0,0,0),A(1,0,0),D(-1,0,0),
C(-2,$\sqrt{3}$,0),B(0,$\sqrt{3}$,0),P(0,$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),
設(shè)平面PBC法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=\frac{\sqrt{3}}{2}y-\frac{3}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{CB}=2x=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(0,$\sqrt{3}$,1),
設(shè)平面ABP法向量$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PB}=\frac{\sqrt{3}}{2}b-\frac{3}{2}c=0}\\{\overrightarrow{m}•\overrightarrow{CE}=-a+\sqrt{3}c=0}\end{array}\right.$,取a=3,得$\overrightarrow{m}$=(3,$\sqrt{3}$,1),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{2\sqrt{13}}{13}$,而二面角所成的角為鈍角,
∴二面角A-PB-C平面角的余弦值為-$\frac{2\sqrt{13}}{13}$.
點(diǎn)評 本題考查線線垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 性別與是否喜歡理科無關(guān) | B. | 女生中喜歡理科的比為80% | ||
C. | 男生比女生喜歡理科的可能性大 | D. | 男生中喜歡理科的比例為80% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在犯錯誤的概率不超過0.05的前提下,認(rèn)為打鼾與患心臟病有關(guān) | |
B. | 約有95%的打鼾者患心臟病 | |
C. | 在犯錯誤的概率不超過0.01的前提下,認(rèn)為打鼾與患心臟病有關(guān) | |
D. | 約有99%的打鼾者患心臟病 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\sqrt{35}$ | C. | $\sqrt{30}$ | D. | 3$\sqrt{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com