4.符合{a}?P⊆{a,b,c}的集合P的個數(shù)有3個.

分析 根據(jù){a}?P⊆{a,b,c},說明集合P真包含{a},且P是集合{a,b,c}的子集,用列舉法寫出滿足條件的集合A即可.

解答 解:∵{a}?P⊆{a,b,c},
∴P={a,c},或P={a,b},或P={a,b,c}共3個,
故答案是:3.

點評 此題是個基礎(chǔ)題,考查子集與真子集、列舉法求有限集合的子集.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.若集合M={x|y=2x+1},N={(x,y)|y=-x2},則M∩N=∅.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若f(x)=1-cosx,則f'(α)等于sinα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知m,n為正數(shù)且有2m+n=1,則$\frac{1}{m}$+$\frac{2}{n}$的最小值為.( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知曲線C:y=sinx+$\sqrt{3}$cosx在點P(x0,y0)(-$\frac{π}{3}$<x0<0)處的切線斜率為$\sqrt{3}$,則曲線C在點P處的切線方程為$\sqrt{3}$x-y-2+$\frac{\sqrt{3}π}{6}$=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.己知函數(shù)f(x)=a(x-$\frac{1}{x}$)-2lnx,其中a∈R.
(1)若f(x)有極值,求a的取值范圍;
(2)若f(x)有三個不同的零點x1,x2,x3,求證:$①f(\frac{a^2}{4})<0;②{x_1}+{x_2}+{x_3}$>3
(參考數(shù)值:ln2≈0.6931)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.河大校辦工廠生產(chǎn)的產(chǎn)品A的直徑均位于區(qū)間[110,118]內(nèi)(單位:mm).若生產(chǎn)一件產(chǎn)品A的直徑位于區(qū)間[110,112),[112,114),[114,116),[116,118]內(nèi)該廠可獲利分別為10,20,30,10(單位:元),現(xiàn)從該廠生產(chǎn)的產(chǎn)品A中隨機抽取100件測量它們的直徑,得到如圖所示的頻率分布直方圖.
(1)求a的值,并估計該廠生產(chǎn)一件A產(chǎn)品的平均利潤;
(2)現(xiàn)用分層抽樣法從直徑位于區(qū)間[112,116)內(nèi)的產(chǎn)品中隨機抽取一個容量為5的樣本,再從樣本中隨機抽取兩件產(chǎn)品進行檢測,求兩件產(chǎn)品中至少有一件產(chǎn)品的直徑位于區(qū)間[112,114)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.解方程:($\frac{{x}^{2}}{x-1}$)2-$\frac{3{x}^{2}}{x-1}$-4=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)全集U=R,A={x∈R|a≤x≤2},B={x∈R|2x+1≤x+3,且3x≥2}.
(1)若a=1,求A∪B,(∁UA)∩B;
(2)若a=-5,C={x∈Z|x2+2x-3<0},求A∩C.

查看答案和解析>>

同步練習冊答案