【題目】已知.
(1)若展開(kāi)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為128,求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù);
(2)若展開(kāi)式前三項(xiàng)的二項(xiàng)式系數(shù)和等于37,求展開(kāi)式中系數(shù)最大的項(xiàng).
【答案】(1)1120;(2)
【解析】
(1)由奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為128求得,再利用二項(xiàng)式系數(shù)的性質(zhì)求解即可;
(2)由展開(kāi)式前三項(xiàng)的二項(xiàng)式系數(shù)和等于37求得,利用展開(kāi)式中系數(shù)最大的項(xiàng)的系數(shù)比相鄰兩項(xiàng)的系數(shù)大,列不等式求解即可.
(1)由展開(kāi)式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為,
可得,
所以展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)第五項(xiàng),其系數(shù)為;
(2)由展開(kāi)式前三項(xiàng)的二項(xiàng)式系數(shù)和,
化為,解得,或(舍去),
設(shè)展開(kāi)式中系數(shù)最大的項(xiàng)為第項(xiàng),
則,
所以展開(kāi)式中系數(shù)最大的項(xiàng)為第6或第7項(xiàng),
即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的短軸長(zhǎng)為4,離心率為,斜率不為0的直線l與橢圓恒交于A,B兩點(diǎn),且以AB為直徑的圓過(guò)橢圓的右頂點(diǎn)M.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線l是否過(guò)定點(diǎn),如果過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);如果不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , , , 與均為等邊三角形,點(diǎn)為的中點(diǎn).
(1)證明:平面平面;
(2)試問(wèn)在線段上是否存在點(diǎn),使二面角的余弦值為,若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】越野汽車(chē)輪胎的質(zhì)量是根據(jù)其正常使用的時(shí)間來(lái)衡量,使用時(shí)間越長(zhǎng),表明質(zhì)量越好,且使用時(shí)間大于或等于6千小時(shí)的為優(yōu)質(zhì)品.現(xiàn)用,兩種不同型號(hào)的汽車(chē)輪胎做試驗(yàn),各隨機(jī)抽取部分產(chǎn)品作為樣本,得到試驗(yàn)結(jié)果的頻率分布直方圖如圖所示,以上述試驗(yàn)結(jié)果中各組的頻率作為相應(yīng)的概率.
(1)現(xiàn)從大量的,兩種型號(hào)的輪胎中各隨機(jī)抽取2件產(chǎn)品,求其中至少有3件是優(yōu)質(zhì)品的概率;
(2)通過(guò)多年統(tǒng)計(jì)發(fā)現(xiàn),型輪胎每件產(chǎn)品的利潤(rùn)(單位:元)與其使用時(shí)間(單位:千小時(shí))的關(guān)系如下表:
使用時(shí)間(單位:千小時(shí)) | |||
每件產(chǎn)品的利潤(rùn)(單位:元) | 200 | 400 |
若從大量的型輪胎中隨機(jī)抽取兩件,其利潤(rùn)之和記為(單位:元),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象過(guò)點(diǎn),且在點(diǎn)處的切線斜率為8.
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下說(shuō)法中,正確的是_____.(填上所有正確說(shuō)法的序號(hào)):
①已知角終邊上一點(diǎn),則;
②函數(shù)的最小正周期是;
③把函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度可以得到的圖象;
④數(shù)的圖象關(guān)于對(duì)稱(chēng);
⑤函數(shù)在上有零點(diǎn),則實(shí)數(shù)的取值范圖是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C:,直線l:.
當(dāng)時(shí),若圓C與直線l交于A,B兩點(diǎn),過(guò)點(diǎn)A,B分別作l的垂線與y軸交于D,E兩點(diǎn),求的值;
過(guò)直線l上的任意一點(diǎn)P作圓的切線為切點(diǎn),若平面上總存在定點(diǎn)N,使得,求圓心C的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知邊長(zhǎng)為米的正方形鋼板有一個(gè)角被銹蝕,其中米, 米.為了合理利用這塊鋼板,將在五邊形內(nèi)截取一個(gè)矩形塊,使點(diǎn)在邊上.
(1)設(shè)米, 米,將表示成的函數(shù),求該函數(shù)的解析式及定義域;
(2)求矩形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,則,滿(mǎn)足什么條件時(shí),曲線與在處總有相同的切線?
(2)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;
(3)當(dāng)時(shí),若對(duì)任意的恒成立,求的取值的集合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com