分析 (1)解方程求得tanα的值,再利用同角三角函數(shù)的基本關(guān)系,求得$\frac{2sinα-cosα}{sinα+cosα}$的值.
(2)根據(jù)tanα=1,利用同角三角函數(shù)的基本關(guān)系,求得3sin2α-sinαcosα+2cos2α的值.
解答 解:(1)∵tanα是關(guān)于x的方程2x2-x-1=0的一個(gè)實(shí)根,且α是第三象限角,
∴tanα=1,或tanα=-$\frac{1}{2}$(舍去),∴$\frac{2sinα-cosα}{sinα+cosα}$=$\frac{2tanα-1}{tanα+1}$=$\frac{1}{2}$.
(2)3sin2α-sinαcosα+2cos2α=$\frac{{3sin}^{2}α-sinαcosα+{2cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{3tan}^{2}α-tanα+2}{{tan}^{2}α+1}$=$\frac{3-1+2}{2}$=2.
點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | ±2 | C. | ±$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\int_1^2{f(x)dx=28}$ | B. | $\int_2^3{f(x)dx=28}$ | ||
C. | $\int_1^2{2f(x)dx=56}$ | D. | $\int_1^2{f(x)dx+}\int_2^3{f(x)dx=56}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-i | B. | 1+i | C. | 2+i | D. | 1-2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 正三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com