19.已知A,B,C三點(diǎn)都在體積為$\frac{500π}{3}$的球O的表面上,若AB=4,∠ACB=30°,則球心O到平面ABC的距離為3.

分析 設(shè)球的半徑為R,則$\frac{4π{R}^{3}}{3}$=$\frac{500π}{3}$,解得R.設(shè)△ABC的外接圓的半徑為r,2r=$\frac{AB}{sin∠ACB}$,解得r.可得球心O到平面ABC的距離d=$\sqrt{{R}^{2}-{r}^{2}}$.

解答 解:設(shè)球的半徑為R,則$\frac{4π{R}^{3}}{3}$=$\frac{500π}{3}$,解得R=5.
設(shè)△ABC的外接圓的半徑為r,2r=$\frac{AB}{sin∠ACB}$=$\frac{4}{sin3{0}^{°}}$=8,解得r=4.
∴球心O到平面ABC的距離d=$\sqrt{{R}^{2}-{r}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3.
故答案為:3.

點(diǎn)評 本題考查了球的體積計(jì)算公式及其性質(zhì)、三角形的外接圓的半徑、正弦定理、勾股定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=x3-3bx+3b在(0,1)內(nèi)有極小值,則實(shí)數(shù)b的取值范圍是(  )
A.(0,1)B.(-∞,1)C.(0,+∞)D.$(-∞,\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布N(0,32),從中隨機(jī)取一件,其長度誤差落在(3,6)內(nèi)的概率為( 。
附:若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544.
A.0.2718B.0.0456C.0.3174D.0.1359

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知${∫}_{0}^{2}$(3x2-1)dx=m,則$(1-x){({x^2}+\frac{1}{x})^m}$的展開式中x4的系數(shù)是-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)長軸的兩頂點(diǎn)為A、B,左右焦點(diǎn)分別為F1、F2,焦距為2c且a=2c,過F1且垂直于x軸的直線被橢圓C截得的線段長為3.
(1)求橢圓C的方程;
(2)在雙曲線$T:\frac{x^2}{4}-\frac{y^2}{3}=1$上取點(diǎn)Q(異于頂點(diǎn)),直線OQ與橢圓C交于點(diǎn)P,若直線AP、BP、AQ、BQ的斜率分別為k1、k2、k3、k4,試證明:k1+k2+k3+k4為定值;
(3)在橢圓C外的拋物線K:y2=4x上取一點(diǎn)E,若EF1、EF2的斜率分別為${k_1}^′$、${k_2}^′$,求$\frac{1}{{{k_1}^′{k_2}^′}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下圖為某一函數(shù)的求值程序框圖,根據(jù)框圖,如果輸出的y的值為3,那么應(yīng)輸入x=( 。
A.1B.2C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知?jiǎng)狱c(diǎn)P(x,y)與一定點(diǎn)F(1,0)的距離和它到一定直線l:x=4的距離之比為$\frac{1}{2}$.
(1)求動點(diǎn)P(x,y)的軌跡C的方程;
(2)己知直線l':x=my+1交軌跡C于A、B兩點(diǎn),過點(diǎn)A、B分別作直線l的垂線,垂足依次為點(diǎn)D、E.連接AE、BD,試探索當(dāng)m變化時(shí),直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請求出定點(diǎn)的坐標(biāo),并給予證明;否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,在四面體ABCD中,截面PQMN是正方形,則下列命題中,正確的為①②④(填序號).
①AC⊥BD;②AC∥截面PQMN;③AC=BD;④異面直線PM與BD所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,點(diǎn)P(0,$\sqrt{3}$),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為${ρ^2}=\frac{4}{{1+{{cos}^2}θ}}$.直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.(t$為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)分別為A,B,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

同步練習(xí)冊答案