13.在直角坐標(biāo)系xOy中,點(diǎn)P(0,$\sqrt{3}$),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為${ρ^2}=\frac{4}{{1+{{cos}^2}θ}}$.直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.(t$為參數(shù)).
(Ⅰ)寫(xiě)出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)分別為A,B,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

分析 (Ⅰ)由曲線C的極坐標(biāo)方程能求出曲線C的直角坐標(biāo)方程;直線l的參數(shù)方程消去t,能求出直線l的普通方程.
(Ⅱ)點(diǎn)P(0,$\sqrt{3}$)在直線l:$\sqrt{3}x+y=\sqrt{3}$上,將直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,得5t2+12t-4=0,設(shè)兩根為t1,t2,則${t}_{1}+{t}_{2}=-\frac{12}{5}$,${t}_{1}{t}_{2}=-\frac{4}{5}$,由此能求出$\frac{1}{|PA|}$+$\frac{1}{|PB|}$.

解答 解:(Ⅰ)∵曲線C的極坐標(biāo)方程為${ρ^2}=\frac{4}{{1+{{cos}^2}θ}}$,
∴曲線C的直角坐標(biāo)方程為$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{4}=1$,
∵直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.(t$為參數(shù)),
∴消去t得直線l的普通方程為$\sqrt{3}x+y=\sqrt{3}$.…(5分)
(Ⅱ)點(diǎn)P(0,$\sqrt{3}$)在直線l:$\sqrt{3}x+y=\sqrt{3}$上,將直線l的參數(shù)方程代入曲線C的直角坐標(biāo)方程,
得2(-$\frac{1}{2}t$)2+($\sqrt{3}+\frac{\sqrt{3}}{2}t$)2=4,∴5t2+12t-4=0,
設(shè)兩根為t1,t2,則${t}_{1}+{t}_{2}=-\frac{12}{5}$,${t}_{1}{t}_{2}=-\frac{4}{5}$,故t1與t2異號(hào),
∴|PA|+|PB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\frac{4\sqrt{14}}{5}$,
|PA|•|PB|=|t1•t2|=-t1t2=$\frac{4}{5}$,
∴$\frac{1}{|PA|}$+$\frac{1}{|PB|}$=$\frac{|PA|+|PB|}{|PA|•|PB|}$=$\sqrt{14}$.…(10分)

點(diǎn)評(píng) 本題考查曲線的直角坐標(biāo)方程及直線的普通方程的求法,考查兩線段倒數(shù)和的取值范圍的求法,考查極坐標(biāo)方程、直角坐標(biāo)方程、參數(shù)方程的互化,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知A,B,C三點(diǎn)都在體積為$\frac{500π}{3}$的球O的表面上,若AB=4,∠ACB=30°,則球心O到平面ABC的距離為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知曲線C:y=sin(2x+φ)(|φ|<$\frac{π}{2}$)的一條對(duì)稱軸方程為x=$\frac{π}{6}$,曲線C向左平移θ(θ>0)個(gè)單位長(zhǎng)度,得到的曲線E的一個(gè)對(duì)稱中心為($\frac{π}{6}$,0),則|φ-θ|的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在直角坐標(biāo)系中,直線l過(guò)定點(diǎn)(-1,0),且傾斜角為α(0<α<π),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=cosθ(ρcosθ+8).
(1)寫(xiě)出l的參數(shù)方程和C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),且$|AB|=8\sqrt{10}$,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y≤2}\\{x-y≥-1}\\{x+y≥1}\end{array}\right.$,則2x+y的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知全集U,集合M,N滿足M⊆N⊆U,則下列結(jié)論正確的是( 。
A.M∪N=UB.(∁UM)∪(∁UN)=UC.M∩(∁UN)=∅D.(∁UM)∪(∁UN)=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,$AB=AC=\frac{1}{2}A{A_1}$,AB⊥AC,D是棱BB1的中點(diǎn).
(Ⅰ)證明:平面A1DC⊥平面ADC;
(Ⅱ)求平面A1DC與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A={x|x2+x-6>0},集合B={x|-1<x<3},若a∈(A∪B),則a可以是( 。
A.-3B.-2C.-1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知橢圓C:$\frac{x^2}{4}+\frac{y^2}{3}$=1的左頂點(diǎn)、上頂點(diǎn)、右焦點(diǎn)分別為A,B,F(xiàn),則$\overrightarrow{AB}•\overrightarrow{AF}$=6.

查看答案和解析>>

同步練習(xí)冊(cè)答案