17.曲線y=2lnx上的點到直線2x-y+3=0的最短距離為(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.3$\sqrt{5}$D.2

分析 設(shè)與直線2x-y+3=0平行且與曲線y=2lnx相切的直線方程為2x-y+m=0.設(shè)切點為P(x0,y0),利用導(dǎo)數(shù)的幾何意義求得切點P,再利用點到直線的距離公式即可得出.

解答 解:設(shè)與直線2x-y+3=0平行且與曲線y=2lnx相切的直線方程為2x-y+m=0.
設(shè)切點為P(x0,y0),
∵y′=$\frac{2}{x}$,
∴斜率$\frac{2}{x}$=2,
解得x0=1,因此y0=2ln1=0.
∴切點為P(1,0).
則點P到直線2x-y+3=0的距離d=$\frac{|2-0+3|}{\sqrt{{2}^{2}+(-1)^{2}}}$=$\sqrt{5}$.
∴曲線y=2lnx上的點到直線2x-y+3=0的最短距離是$\sqrt{5}$.
故選:A.

點評 本題考查了導(dǎo)數(shù)的幾何意義和兩條平行線之間的距離、點到直線的距離公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知$sin({α+\frac{π}{3}})+sinα=\frac{{9\sqrt{7}}}{14}$,$0<α<\frac{π}{3}$.
(1)求sinα的值;
(2)求$cos(2α-\frac{π}{4})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f (x)=lnx-mx+m.
(1)若f (x)≤0在x∈(0,+∞)上恒成立,求實數(shù)m的取值范圍;
(2)在(1)的條件下,對任意的0<a<b,求證:$\frac{f(b)-f(a)}{b-a}<\frac{1}{a(a+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.拋物線x=-ay2(a>0)的準線方程為$x=\frac{1}{4a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.數(shù)列3,5,9,17,33,…的通項公式an等于(  )
A.2nB.2n+1C.2n-1D.2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a∈R,若函數(shù)y=eax+2x,x∈R有大于零的極值點,則( 。
A.a<-2B.a>-2C.a>-$\frac{1}{2}$D.a<-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)x∈Z,A={奇數(shù)},B={偶數(shù)},若命題p:?x∈A,2x∈B,則其否定為( 。
A.?x∈A,2x∉BB.?x∉A,2x∉BC.?x∉A,2x∈BD.?x∈A,2x∉B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列兩組變量具有相關(guān)關(guān)系的是( 。
A.人的體重與學(xué)歷B.圓的半徑與其周長
C.人的生活水平與購買能力D.成年人的財富與體重

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.心理學(xué)家分析發(fā)現(xiàn)“喜歡空間現(xiàn)象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗證此結(jié)論,從全體組員中按層抽樣的方法抽取50名同學(xué)(男生30人,女生20人),給每位同學(xué)立體幾何體,代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進行解答,選題情況統(tǒng)計如表:(單位:人)
立體幾何題代數(shù)題總計
男同學(xué)22830
女同學(xué)81220
總計302050
(1)能否有97.5%以上的把握認為“喜歡空間想象”與“性別”有關(guān)?
(2)經(jīng)統(tǒng)計得,選擇做立體幾何題的學(xué)生正答率為$\frac{4}{5}$,且答對的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯的學(xué)生中任意抽取兩人對他們的答題情況進行研究,求恰好抽到男女生各一人的概率.
附表及公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊答案