3.?dāng)?shù)列{an}中,a1=1,an+1=2an+2,則a7的值為(  )
A.94B.96C.190D.192

分析 an+1=2an+2,變形為an+1+2=2(an+2),利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵an+1=2an+2,
∴an+1+2=2(an+2),
∴數(shù)列{an+2}是等比數(shù)列,首項(xiàng)為3,公比為2,
∴an+2=3•2n-1,
∴a7=3×26-2=190.
故選:C.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式,考查了變形能力、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)F1為橢圓C1:$\frac{(x-1)^{2}}{16}+\frac{{y}^{2}}{12}$=1的左焦點(diǎn),M是C1上任意一點(diǎn),P是線段F1M的中點(diǎn);
(])求動(dòng)點(diǎn)P的軌跡C的方程;
(2)若直線y=kx+2交軌跡C于A,B兩點(diǎn),AB的中垂線交y軸于點(diǎn)Q(0,t),求t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$M:\frac{x^2}{2}+{y^2}=1$左、右焦點(diǎn)分別為F1、F2,點(diǎn)p為直線l:x+y=2上且不在x軸上的任意一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn);
(1)求△ABF2的周長;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:$\frac{1}{k_1}-\frac{3}{k_2}=2$;
(3)問直線l是否存在點(diǎn)P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.?dāng)?shù)列{an}的前n項(xiàng)和${S_n}=2{n^2}-3n({n∈{N^*}})$,則an=4n-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=tanx在點(diǎn)$({\frac{π}{3},\sqrt{3}})$處的切線斜率為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解關(guān)于x的不等式x2-(a+1)x+a≥0(a∈R).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若$|\overrightarrow a|=2$,$|\overrightarrow b|=1$,且$\overrightarrow a$與$\overrightarrow b$夾角為60°,則$|2\overrightarrow a-\overrightarrow b|$=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.橢圓的中心為坐標(biāo)原點(diǎn),長、短軸長之比為$\frac{2}{1}$,一個(gè)焦點(diǎn)是(0,-2),試求橢圓的離心率和橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.2017年實(shí)驗(yàn)中學(xué)要給三個(gè)班級(jí)補(bǔ)發(fā)8套教具,先將其分成3堆,其中一堆4個(gè),另兩堆每堆2個(gè),一共有多少種不同分堆方法( 。
A.C${\;}_{8}^{4}$C${\;}_{4}^{2}$C${\;}_{2}^{2}$B.C${\;}_{3}^{1}$C${\;}_{8}^{2}$
C.$\frac{{C}_{8}^{4}{C}_{4}^{2}}{{A}_{2}^{2}}$D.$\frac{{C}_{8}^{4}{C}_{4}^{2}{C}_{2}^{2}}{{A}_{3}^{3}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案