13.如圖,AB是⊙O的直徑,PA垂直于⊙O所在平面,C是圓周上不同于A,B兩點(diǎn)的任意一點(diǎn),且AB=2,$PA=BC=\sqrt{3}$,則直線(xiàn)PC與底面ABC所成角的大小為( 。
A.30°B.45°C.60°D.90°

分析 由題意可知,∠PCA為直線(xiàn)PC與底面ABC所成角,然后求解直角三角形得答案.

解答 解:如圖,
∵PA垂直于⊙O所在平面,∴AC為PC在地面上的射影,
則∠PCA為斜線(xiàn)PC與底面所成角,
又AB為圓O的直徑,∴AC⊥BC,在Rt△ACB中,
∵AB=2,BC=$\sqrt{3}$,∴AC=$\sqrt{{2}^{2}-(\sqrt{3})^{2}}=1$,
在Rt△PAC中,∵PA=$\sqrt{3}$,AC=1,
∴tan∠PCA=$\frac{PA}{AC}=\sqrt{3}$,則∠PCA=60°.
∴直線(xiàn)PC與底面ABC所成角的大小為60°.
故選:C.

點(diǎn)評(píng) 本題考查直線(xiàn)與平面所成角,考查空間想象能力和思維能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.不等式(3x+1)(1-2x)>0的解集是( 。
A.$\{x|x<-\frac{1}{3}或x>\frac{1}{2}\}$B.$\{x|-\frac{1}{3}<x<\frac{1}{2}\}$C.$\{x|x>\frac{1}{2}\}$D.$\{x|x>-\frac{1}{3}\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若f(x)為奇函數(shù),且x0是函數(shù)y=f(x)-ex的一個(gè)零點(diǎn),在下列函數(shù)中,-x0一定是其零點(diǎn)的函數(shù)是( 。
A.y=f(-x)•e-x-1B.y=f(x)•e-x+1C.y=f(x)•e-x-1D.y=f(x)•ex+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.?dāng)?shù)列{an}中,${a_1}=\frac{1}{2},{a_{n+1}}=\frac{{n{a_n}}}{{({n+1})({n{a_n}+1})}}({n∈{N^*}})$,若不等式$\frac{3}{n^2}+\frac{1}{n}+t{a_n}≥0$恒成立,則實(shí)數(shù)t的取值范圍是[-$\frac{15}{2}$,+∞)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某校高一(1)班全體男生的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如圖甲所示,據(jù)此解答如下問(wèn)題:
(1)求該班全體男生的人數(shù);
(2)求分?jǐn)?shù)在[80,90)之間的男生人數(shù),并計(jì)算頻率公布直方圖如圖乙中[80,90)之間的矩形的高;
(3)根據(jù)頻率分布直方圖,估計(jì)該班全體男生的數(shù)學(xué)平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.將函數(shù)$y=4sin({4x+\frac{π}{6}})$的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變),再將所得圖象向右平移$\frac{π}{6}$個(gè)單位,則所得函數(shù)圖象的一個(gè)對(duì)稱(chēng)中心為( 。
A.(0,0)B.$({\frac{π}{3},0})$C.$({\frac{π}{12},0})$D.$({\frac{5}{8}π,0})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=sin2x+kcos2x的一條對(duì)稱(chēng)軸方程為$x=\frac{π}{6}$,則k=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若不等式n2-n(λ+1)+7≥λ,對(duì)一切n∈N*恒成立,則實(shí)數(shù)λ的取值范圍( 。
A.λ≤3B.λ≤4C.2≤λ≤3D.3≤λ≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.棱長(zhǎng)為1的正方體截去一部分之后余下的幾何體,其三視圖如圖所示,則余下幾何體體積的最小值為( 。
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案