A. | λ≤3 | B. | λ≤4 | C. | 2≤λ≤3 | D. | 3≤λ≤4 |
分析 推導(dǎo)出n2-n+7≥λ(n+1),從而λ≤$\frac{{n}^{2}-n+7}{n+1}$對一切n∈N*恒成立.由此利用基本不等式能求出實(shí)數(shù)λ的取值范圍.
解答 解:∵不等式n2-n(λ+1)+7≥λ,對一切n∈N*恒成立,
∴n2-n+7≥λ(n+1),
∵n∈N*,∴λ≤$\frac{{n}^{2}-n+7}{n+1}$對一切n∈N*恒成立.
而$\frac{{n}^{2}-n+7}{n+1}$=$\frac{(n+1)^{2}-3(n+1)+9}{n+1}$=(n+1)+$\frac{9}{n+1}$-3≥$2\sqrt{(n+1)•\frac{9}{n+1}}$-3=3,
當(dāng)且僅當(dāng)n+1=$\frac{9}{n+1}$,即=2時等號成立,
∴n≤3.
故選:A.
點(diǎn)評 本題考查實(shí)數(shù)的取值范圍的求法,涉及到數(shù)列、均值不等式等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 0 | D. | $-2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\sqrt{5},2\sqrt{5}})$ | B. | $({2\sqrt{5},5})$ | C. | $({\sqrt{5},5})$ | D. | $({2,\sqrt{5}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6π | B. | $\frac{46}{3}$π | C. | 18π | D. | $\frac{52}{3}$π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com