4.已知{an}為等差數(shù)列,Sn為其前n項(xiàng)和,若a2=4,S8=-8,則a10=-12.

分析 由已知條件,利用等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,建立方程組,求出首項(xiàng)和公差,由此能求出結(jié)果.

解答 解:等差數(shù)列{an}的前n項(xiàng)和為Sn
∵a2=4,S8=-8,設(shè)公差為d,
∴$\left\{\begin{array}{l}{{a}_{1}+d=4}\\{8{a}_{1}+\frac{8×(8-1)d}{2}=-8}\end{array}\right.$,
解得a1=6,d=-2,
∴a10=6+9×(-2)=-12.
故答案為:-12

點(diǎn)評 本題考查等差數(shù)列中第10項(xiàng)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,要熟練掌握等差數(shù)列的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.$\sum_{k=0}^m{C_{n-k}^{n-m}}C_n^k$=( 。
A.2m+nB.$\frac{C_n^m}{2^m}$C.${2^n}C_n^m$D.${2^m}C_n^m$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)全集U=Z,集合A={x∈Z|x(x-2)≥3},則∁UA=( 。
A.{0,1,2,3}B.{-1,0,1,2}C.{-1,0,1,2,3}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線的斜率為2,則離心率e=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{AB}$=(1,$\sqrt{3}$),$\overrightarrow{AC}$=(-1,$\sqrt{3}$),則∠BAC=( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.若對?n∈N*,總?k∈N*,使得Sn=ak,則稱數(shù)列{an}是“G數(shù)列”.
(Ⅰ)若數(shù)列{an}是等差數(shù)列,其首項(xiàng)a1=1,公差d=-1.證明:數(shù)列{an}是“G數(shù)列”;
(Ⅱ)若數(shù)列{an}的前n項(xiàng)和Sn=3n(n∈N*),判斷數(shù)列{an}是否為“G數(shù)列”,并說明理由;
(Ⅲ)證明:對任意的等差數(shù)列{an},總存在兩個“G數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若拋物線y2=8x上的點(diǎn)P到焦點(diǎn)的距離為6,則P到y(tǒng)軸的距離是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在如圖所示的計(jì)算1+5+9+…+2013的程序框圖中,判斷框內(nèi)應(yīng)填入( 。
A.i≤504B.i≤2009C.i≤2013D.i<2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知復(fù)數(shù)z滿足(z-1)i=i+1,則z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)在第( 。┫笙蓿
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案