11.設集合A={x|x2-4x+3=0},B={x|x2-5x+4=0},集合A∪B為(  )
A.{1}B.{1,3}C.{1,4}D.{1,3,4}

分析 求出集合A,集合B,然后求解并集即可.

解答 解:集合A={x|x2-4x+3=0}={1,3},B={x|x2-5x+4=0}={1,4},
集合A∪B={1,3,4}.
故選:D.

點評 本題考查集合的并集的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+1,x≤0\\-x+1,x>0\end{array}$,若a=f(${log_2}\frac{1}{3}$),b=f(${2^{\frac{1}{3}}}$),c=f(${3^{-\frac{1}{2}}}$),則( 。
A.a>b>cB.c>b>aC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.求直線x-y+2=0被圓(x-2)2+(y-2)2=4截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列各式中,最小的是( 。
A.2cos240°-1B.2sin6°cos6°
C.sin50°cos37°-sin40°cos53°D.$\frac{\sqrt{3}}{2}$sin41°-$\frac{1}{2}$cos41°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A={x|x2-x-2<0},B=$\{x|y=lg\frac{1-x}{1+x}\}$,在區(qū)間(-3,3)上任取一實數(shù)x,則x∈A∩B的概率為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.隨機詢問某校40名不同性別的學生在購買食物時是否讀營養(yǎng)說明,得到如下2×2列聯(lián)表:
讀營養(yǎng)說明不讀營養(yǎng)說明合計
16
20
合計16
(1)補全列聯(lián)表
(2)根據(jù)以上列聯(lián)表進行獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為“性別與是否讀營養(yǎng)說明之間有關系”?
附:K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$.
臨界值表:
P(K2≥k)0.100.050.010
k2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知向量$\overrightarrow a$=(3,-2),$\overrightarrow b$=(x,4),且$\overrightarrow a$∥$\overrightarrow b$,則x的值-6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知直線l過定點P(1,0),且與C:(x-2)2+(y-$\sqrt{2}$)2=2圓相交于A,B兩點.
(Ⅰ)若直線l的傾斜角為$\frac{π}{4}$,求線段AB中點M的坐標;
(Ⅱ)當△ABC的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知四邊形MNPQ的頂點M(1,1),N(3,-1),P(4,0),Q(2,2),
(1)求斜率kMN與kPQ,并判斷直線MN與直線PQ的位置關系.
(2)求直線PQ的方程.

查看答案和解析>>

同步練習冊答案