6.化簡:
(1)sinαcosα(tanα+cotα);
(2)$\frac{{\sqrt{1-2sinθcosθ}}}{{sinθ-\sqrt{1-{{sin}^2}θ}}}$(其中$θ∈({0,\frac{π}{4}})$)

分析 (1)利用同角的三角函數(shù)關(guān)系式化切為弦即可求值;
(2)把分子中根式內(nèi)部化為完全平方式在開方,分母中的根式利用同角三角函數(shù)的基本關(guān)系式化正弦為余弦后開方,再由角的范圍去絕對值得答案.

解答 解:(1)sinαcosα(tanα+cotα)=sinαcosα($\frac{sinα}{cosα}+\frac{cosα}{sinα}$)=sin2α+cos2α=1;
(2)∵$θ∈({0,\frac{π}{4}})$,
∴$\frac{{\sqrt{1-2sinθcosθ}}}{{sinθ-\sqrt{1-{{sin}^2}θ}}}$=$\frac{\sqrt{(sinθ-cosθ)^{2}}}{sinθ-|cosθ|}$=$\frac{|sinθ-cosθ|}{sinθ-|cosθ|}$=$\frac{cosθ-sinθ}{sinθ-cosθ}$=-1.

點評 本題主要考查了同角的三角函數(shù)關(guān)系式的應(yīng)用,考查三角函數(shù)的象限符號,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若定義在R上的函數(shù)f(x)當(dāng)且僅當(dāng)存在有限個非零自變量x,使得f(-x)=f(x),則稱f(x)為類偶函數(shù),則下列函數(shù)中為類偶函數(shù)的是(  )
A.f(x)=cosxB.f(x)=sinxC.f(x)=x2-2xD.f(x)=x3-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a>0,函數(shù)f(x)=a2x3-3ax2+2,g(x)=-3ax+3.
(1)若a=1,求函數(shù)f(x)的圖象在點x=1處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[-1,1]上的極值;
(3)若?x0∈(0,$\frac{1}{2}$],使不等式f(x0)>g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.二項式(x2+$\frac{2}{\sqrt{x}}$)5展開式中的常數(shù)項是80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<0}\\{a{x}^{3}+(b-4a){x}^{2}-(4b+m)x+n,0≤x≤4}\\{a(lo{g}_{4}x-1),x>4}\end{array}\right.$,(其中a≠0)的圖象不間斷.
(1)求m,n的值;
(2)若a,b互為相反數(shù),且f(x)是R上的單調(diào)函數(shù),求a的取值范圍;
(3)若a=1,b∈R,試討論函數(shù)g(x)=f(x)+b的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=1,an+1=$\frac{2(n+1)}{n}$an,設(shè)${b_n}=\frac{a_n}{n}$,n∈N*
(Ⅰ)證明{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{log2bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}(x+1)|,x∈(-1,3)}\\{\frac{4}{x-1},x∈[3,+∞)}\end{array}\right.$則函數(shù)g(x)=f[f(x)]-1的零點個數(shù)為(  )
A.1B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=-sin2x+msinx+2,當(dāng)x∈[$\frac{π}{6}$,$\frac{2π}{3}$]時函數(shù)有最大值為$\frac{3}{2}$,求此時m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用邊長為48cm的正方形鐵皮做一個無蓋的鐵盒,在鐵皮的四角各截去一個面積相等的小正方形,然后把四邊折起,就能焊成一個鐵盒.則所做的鐵盒容積最大時,在四角截去的小正方形的邊長為( 。
A.6 cmB.8 cmC.10 cmD.12 cm

查看答案和解析>>

同步練習(xí)冊答案