13.已知實(shí)數(shù)x,y滿(mǎn)足不等式組$\left\{\begin{array}{l}2x-y+2≥0\\ x-4y+1≤0\\ x+y-2≤0\end{array}\right.$,則z=3|x|+y的最小值為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

分析 由線(xiàn)性約束條件畫(huà)出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為分段函數(shù),根據(jù)角點(diǎn)法,求出目標(biāo)函數(shù)的最小值.

解答 解:由約束條件$\left\{\begin{array}{l}2x-y+2≥0\\ x-4y+1≤0\\ x+y-2≤0\end{array}\right.$作出可行域如圖,

z=3|x|+y,可得y=-3|x|+z=$\left\{\begin{array}{l}{-3x+z,x≥0}\\{3x+z,x<0}\end{array}\right.$,
由$\left\{\begin{array}{l}{2x-y+2=0}\\{x-4y+1=0}\end{array}\right.$,得A(-1,0),此時(shí)z=3,
由$\left\{\begin{array}{l}{2x-y+2=0}\\{x+y-2=0}\end{array}\right.$,可得B(0,2),此時(shí)z=2.
由$\left\{\begin{array}{l}{x-4y+1=0}\\{x+y-2=0}\end{array}\right.$,可得C($\frac{7}{5},\frac{3}{5}$),此時(shí)z=$\frac{24}{5}$,x-4y+1=0時(shí),x=0,y=$\frac{1}{4}$,此時(shí)z=$\frac{1}{4}$.
∴z=3|x|+y的最小值為$\frac{1}{4}$,
故選:A.

點(diǎn)評(píng) 在線(xiàn)性規(guī)劃問(wèn)題中目標(biāo)函數(shù)取得最值的點(diǎn)一定是區(qū)域的頂點(diǎn)和邊界,在邊界上的值也等于在這個(gè)邊界上的頂點(diǎn)的值,故在解答,只要能把區(qū)域的頂點(diǎn)求出,直接把頂點(diǎn)坐標(biāo)代入進(jìn)行檢驗(yàn)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+2x({x≥0})\\ g(x)({x<0})\end{array}$為奇函數(shù),則g(-1)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,已知曲線(xiàn)C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.(θ為參數(shù))$,以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線(xiàn)l:ρ(2cosθ-sinθ)=6.
(1)將曲線(xiàn)C1上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的$\sqrt{3}$、2倍后得到曲線(xiàn)C2;試寫(xiě)出直線(xiàn)l的直角坐標(biāo)方程和曲線(xiàn)C2的參數(shù)方程;
(2)在曲線(xiàn)C2上求一點(diǎn)P,使點(diǎn)P到直線(xiàn)l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,AB=2,SA=SB=SC=2,則三棱錐的外接球的球心到平面ABC的距離是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知立方體ABCD-A'B'C'D',E,F(xiàn),G,H分別是棱AD,BB',B'C',DD'中點(diǎn),從中任取兩點(diǎn)確定的直線(xiàn)中,與平面AB'D'平行的有( 。l.
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)函數(shù)f(x)=$\frac{x}{1+|x|}$,則使得f(x2-2x)>f(3x-6)成立的x的取值范圍是(  )
A.(-∞,2)∪(3,+∞)B.(2,3)C.(-∞,2)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知兩個(gè)函數(shù)f(x)=log4(a$•{2}^{x}-\frac{4}{3}a$)(a≠0),g(x)=log4(4x+1)-$\frac{1}{2}x$的圖象有且只有一個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是{a|a>1或a=-3}..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列命題中正確的是(  )
A.過(guò)三點(diǎn)確定一個(gè)平面B.四邊形是平面圖形
C.三條直線(xiàn)兩兩相交則確定一個(gè)平面D.兩個(gè)相交平面把空間分成四個(gè)區(qū)域

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=$\frac{1}{2}$x2-alnx(a∈R),g(x)=x2-(a+1)x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a≥0時(shí),討論函數(shù)f(x)與g(x)的圖象的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案