A. | (1,+∞) | B. | (-∞,1) | C. | [1,2] | D. | (0,1) |
分析 令t=2x-x2 ≥0,求得函數(shù)的定義域,根據(jù)y=g(t)=${(\frac{1}{3})}^{\sqrt{t}}$,本題即求函數(shù)t的減區(qū)間,再利用二次函數(shù)的性值得出結(jié)論.
解答 解:令t=2x-x2 ≥0,求得0≤x≤2,則函數(shù)的定義域為[0,2],且y=g(t)=${(\frac{1}{3})}^{\sqrt{t}}$,
故本題即求函數(shù)t的減區(qū)間.
再利用二次函數(shù)的性值可得函數(shù)t的減區(qū)間為[1,2],
故選:C.
點評 本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)、指數(shù)函數(shù)的性質(zhì),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,\frac{1}{2}]$ | B. | $(-∞,\frac{1}{2})$ | C. | (-∞,2] | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 1 | D. | $\frac{{\sqrt{10}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com