3.若命題“?x∈(-1,1],2x>a”是真命題,則a的取值范圍是( 。
A.$(-∞,\frac{1}{2}]$B.$(-∞,\frac{1}{2})$C.(-∞,2]D.(-∞,2)

分析 根據(jù)特稱命題求出函數(shù)的值域,然后推出a的取值范圍.

解答 解:x∈(-1,1],2x∈($\frac{1}{2}$,2],
命題“?x∈(-1,1],2x>a”是真命題,
可得a<2.
故選:D.

點評 本題主要考查命題的真假應用,結合指數(shù)函數(shù)的值域是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.設x,y,z為正實數(shù),且x+y+z=3.求證:$\frac{x^2}{{x+\sqrt{yz}}}+\frac{y^2}{{y+\sqrt{zx}}}+\frac{z^2}{{z+\sqrt{xy}}}≥\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知log2(2-x)≤log2(3x+6)
(1)解上述不等式;
(2)在(1)的條件下,求函數(shù)$y={({\frac{1}{4}})^{x-1}}-4•{({\frac{1}{2}})^x}$+2的最大值和最小值及相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在ABCD中,角A,B,C所對的邊分別為a,b,c,且$\overrightarrow{m}$=(sinA,sinB-sinC),$\overrightarrow{n}$=(a-$\sqrt{3}$b,b+c),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角C的值;
(2)若△ABC外接圓半徑為2,面積為$\sqrt{3}$且a>b,求a,b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù) f(x)=ax-x4,x∈[$\frac{1}{2}$,1],A、B是圖象上不同的兩點,若直線AB的斜率k總滿足 $\frac{1}{2}$≤k≤4,則實數(shù)a的值是(  )
A.$\frac{9}{2}$B.$\frac{7}{2}$C.5D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖,網(wǎng)格紙上正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為( 。
A.$\frac{13}{3}$B.$\frac{14}{3}$C.$\frac{15}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設函數(shù)f(x)=|x-2|+|x-a|,x∈R.
(1)求證:當a=-8時,不等式lgf(x)≥1成立;
(2)若關于x的不等式f(x)≥a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)$y={(\frac{1}{3})^{\sqrt{2x-{x^2}}}}$的單調遞增區(qū)間為( 。
A.(1,+∞)B.(-∞,1)C.[1,2]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=mx-$\frac{m-1+2e}{x}$-lnx,m∈R函數(shù)g(x)=$\frac{1}{xcosθ}$+lnx在[1,+∞)上為增函數(shù),且θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)求θ的值;
(Ⅱ)當m=0時,求函數(shù)f(x)的單調區(qū)間和極值;
(Ⅲ)若在[1,e]上至少存在一個x0,使得f(x0)>g(x0)成立,求m的取值范圍.

查看答案和解析>>

同步練習冊答案