A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | $\frac{\sqrt{2}+1}{2}$ | D. | $\sqrt{2}$+1 |
分析 確定拋物線y2=2px(p>0)的焦點(diǎn)與準(zhǔn)線方程,利用點(diǎn)M為這兩條曲線的一個(gè)交點(diǎn),且|MF|=p,求出M的坐標(biāo),代入雙曲線方程,即可求得結(jié)論.
解答 解:拋物線y2=2px(p>0)的焦點(diǎn)為F($\frac{p}{2}$,0),其準(zhǔn)線方程為x=-$\frac{p}{2}$,
∵準(zhǔn)線經(jīng)過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),
∴c=$\frac{p}{2}$;
∵點(diǎn)M為這兩條曲線的一個(gè)交點(diǎn),且|MF|=p,
∴M的橫坐標(biāo)為$\frac{p}{2}$,
代入拋物線方程,可得M的縱坐標(biāo)為±p,
將M的坐標(biāo)代入雙曲線方程,可得$\frac{\frac{{p}^{2}}{4}}{{a}^{2}}-\frac{{p}^{2}}{^{2}}$=1,
∴a=$\frac{\sqrt{2}-1}{2}$p,
∴e=1+$\sqrt{2}$.
故選:D.
點(diǎn)評(píng) 本題考查拋物線的幾何性質(zhì),考查曲線的交點(diǎn),考查雙曲線的幾何性質(zhì),確定M的坐標(biāo)是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈N,x2≤x | B. | ?x0∈N,${x}_{0}^{2}$≤x0 | C. | ?x∉N,x2>x | D. | ?x0∉N,${x}_{0}^{2}$≤x0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
廣告費(fèi)用x | 2 | 3 | 4 | 5 |
銷售額y | 26 | 39 | 49 | 54 |
A. | 65.5 | B. | 66.6 | C. | 67.7 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{108}$=1 | B. | $\frac{{x}^{2}}{108}$-$\frac{{y}^{2}}{36}$=1 | C. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{27}$=1 | D. | $\frac{{x}^{2}}{27}$-$\frac{{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}-1}}{2}$ | B. | $\frac{{\sqrt{2}+1}}{2}$ | C. | $\sqrt{2}+1$ | D. | $\sqrt{5}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在[0,π]上是減函數(shù),[0,2π]上是增函數(shù) | B. | [0,π]在上是增函數(shù),[0,2π]上是減函數(shù) | ||
C. | 增函數(shù) | D. | 減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=f(|x|) | B. | y=|f(x)| | C. | y=f(-|x|) | D. | y=-f(-|x|) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com